


Digital Research Methods with 
Mathematica®
William J. Turkel
University of Western Ontario
william.j.turkel@gmail.com

2015

This is a Mathematica notebook
If you have never used one before, you can expand and collapse sections by double clicking on the 
cell brackets to the right...

The cell beneath this one contains code. You can evaluate it by selecting its cell bracket and press-
ing "↵
2 + 2

about

About This Book

Version

This is version 1.0 (Summer 2015). There are six chapters that are more-or-less finished, and code 
snippets for about six more chapters that I would like to write. The sections that are unfinished are 
marked (Under Development).

The latest version of this book is freely available at 
http://williamjturkel.net/digital-research-methods-with-mathematica/

This book is compatible with Mathematica version 10.2 and later. Most of the code will work with 
versions later than 9.0.

Slides

You can find slides to complement the book at
http://williamjturkel.net/teaching/history-2816a-introduction-to-digital-history-fall-2015/
http://williamjturkel.net/teaching/history-9877a-digital-research-methods-fall-2015/

Feedback

Feedback is always welcome. You can email me at william.j.turkel@gmail.com

Licenses

Text: CC-BY-NC

Code: MIT

Mathematica and Wolfram Alpha are registered trademarks of Wolfram Research, Inc. 

2     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Acknowledgements

Jack Bunce, my RA in the summer of 2015, provided feedback on chapters 01-06, put in a number 
of hyperlinks to the documentation and suggested some of the problems and exercises. Arno Bosse 
(University of Oxford) worked through chapters 01-02 and provided very extensive notes. Chris 
Roney (Wolfram Research) was an enthusiastic supporter of the project. Mathematica Stack 
Exchange is the first place I looked for answers to any questions that weren’t covered by the 
documentation.

Cover Image

The cover image is based on a photograph of Sydney taken by the Climate Change Research 
Centre in August 2015. It has a CC-BY license. https://www.flickr.com/photos/ccrc_weath-
er/20372731668/

Table of Contents
You can click on a heading to jump directly to that chapter.

◼ About This Book

◼ Introduction

◼ What You Need to Know to Get Started

◼ Chapter 01: Analyzing Text

◼ Chapter 02 : Pattern Matching

◼ Chapter 03: Who and What

◼ Chapter 04: When and Where

◼ Chapter 05: Information Retrieval

◼ Chapter 06: Internet Sources

◼ Chapter 07: Image Processing (Under Development)

◼ Chapter 08: (Under Development)

◼ Appendix A: Sources and Code

intro

Introduction
This is a book about doing research with digital sources. It teaches you how to find, harvest, man-
age, excerpt, cluster and analyze digital materials throughout the research process, from initial 
exploratory forays through the production of an article, chapter or monograph which is ready to 
submit for publication. For more than a decade, ‘doing research’ has mostly meant doing research 
online, and yet there are few textbooks that bridge the gap between the basic stuff—using search 
engines, evaluating the quality of sources, verifying information, keeping track of citations with 
bibliographic software—and the kind of computational techniques that researchers need to thrive in 
a networked environment with superabundant source materials. For the key point about digital 
sources is that they can be read and processed by machines, in vast numbers and very quickly, 
often autonomously. The most scarce resource now is human care and attention. You want to be 
able to focus on reading, thinking and writing, and let computers do what they do best.

Why should you learn digital research methods? Aren’t traditional research methods good enough? 
Here are three scenarios.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     3



Why should you learn digital research methods? Aren’t traditional research methods good enough? 
Here are three scenarios.

1. You gain temporary access to a large collection of non-digital sources that are important 
for your research. These might be in an archive or private collection; they might be 
pamphlets or books or boxes of file folders. Given the ubiquity of camera phones, most 
people would now choose to photograph the pages if possible, and researchers who do 
extensive archival work often return home with thousands or tens of thousands of digital 
photographs of various documents. You could spend the next few years going through the 
pictures one at a time and typing notes into a word processor. Or you could write a small 
script to convert each image into readable text and drop the whole batch into a custom 
search engine. In less than an hour you could be searching for words and phrases 
anywhere in your primary sources.

2. You discover a collection of hundreds or thousands of online texts that are directly related 
to your research. You could look through the list of titles in your web browser and click on 
the links one at a time, scanning each to see if it is relevant. Even if you cut-and-paste 
notes from the sources to a word processor, it will still take you at least a few months to go 
through the collection. Or you could write a small script to download all of the sources to 
your own machine and run a clustering program on them. This sorts the texts into batches 
of closely related documents, then subdivides those by topic. In less than an hour, you 
would be able to visualize the contents of the whole collection and focus in on the topics 
that are of immediate interest to you.

3. You’ve been working with the written corpus of a historically significant figure. You have 
the books and essays that he or she wrote, their diary entries and their correspondence 
with a large number of other individuals. How do you make sense of a lifetime of writing? 
Can you chart important changes in someone’s conceptual world? Spot the emergence of 
new ideas in the discourse of a community? Map the ever-changing social relations 
between a network of correspondents?

These examples are just the tip of the iceberg, however. Digital Research Methods introduces a 
wide variety of other powerful techniques: automatically extracting all of the images that appear in 
series of page images (say the run of a newspaper or journal) and classifying them into photos, 
drawings, charts, and so on; automatically identifying the people, places, institutions, dates, and 
other entities mentioned in texts; mapping and visualizing huge data sets; linking records to com-
putable data; and many others. Computation won’t magically do your research for you, but it will 
make you much more efficient. You can focus on close reading, interpretation and writing, and use 
machines to help you find, summarize, organize, analyze and visualize sources.

Digital Research Methods is suitable for self-study or for a one-term undergraduate or graduate 
course. Since it is intended for as wide an audience as possible, I’ve tried to keep mathematical 
prerequisites to a minimum. Not to say that there isn’t some math in the book, just that it is included 
in sections that are designed to encourage further or deeper exploration, and can be skimmed on a 
first reading. Likewise, I don’t assume that you already know how to program, although I do hope 
that you will learn some new techniques, whatever your level of previous programming experience.

I use this book to teach both undergraduate and graduate courses in the humanities and social 
sciences. For the undergraduate course, I schedule two blocks per week of two hours each. For the 
first hour of each block, I work through basic examples carefully, explaining how they work, answer-
ing any questions the students have, and asking them questions that I think will deepen their inter-
est or understanding. I have been teaching programming for more than thirty years now, and I think 
that one of the best ways to learn how to program is to do it collaboratively with other people who 
have more experience programming. For the second hour of each block, the students have a 
chance to work on programming problems and exercises themselves while I walk around the room 
and answer questions, make suggestions, and so on. In the graduate course, I expect the students 
to try to work through some basic examples on their own. In class we cover the basics more quickly 
then discuss generalizations and applications. The students then try to apply the techniques to their 
own research materials and write up their results in the form of reflective blog posts. For both 
classes, I have prepared a set of slides that complement this book. They can be found online at 
http://williamjturkel.net/teaching/

4     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



I use this book to teach both undergraduate and graduate courses in the humanities and social 
sciences. For the undergraduate course, I schedule two blocks per week of two hours each. For the 
first hour of each block, I work through basic examples carefully, explaining how they work, answer-
ing any questions the students have, and asking them questions that I think will deepen their inter-
est or understanding. I have been teaching programming for more than thirty years now, and I think 
that one of the best ways to learn how to program is to do it collaboratively with other people who 
have more experience programming. For the second hour of each block, the students have a 
chance to work on programming problems and exercises themselves while I walk around the room 
and answer questions, make suggestions, and so on. In the graduate course, I expect the students 
to try to work through some basic examples on their own. In class we cover the basics more quickly 
then discuss generalizations and applications. The students then try to apply the techniques to their 
own research materials and write up their results in the form of reflective blog posts. For both 
classes, I have prepared a set of slides that complement this book. They can be found online at 
http://williamjturkel.net/teaching/

For self-study or for students in more technical disciplines, this book can be combined with a guide-
book to using Mathematica for doing math (such as Torrence & Torrence 2009, which is dated but 
still good) and/or a book on Mathematica programming (such as Wellin 2013). Some of the undocu-
mented code, project ideas and exercises require more substantial background in math or computer 
science. If you can’t make sense of the code without an explanation, you’re probably not ready to 
tackle that problem or technique yet.

Mathematica has a number of features which make it particularly useful for doing digital research. 
One of the main advantages is that the notebook model allows you to mix prose, data, executable 
code, visualizations, simulations, interface elements, hyperlinks and other elements. The computer 
scientist Donald Knuth called this ‘literate programming’: “Instead of imagining that our main task is 
to instruct a computer what to do, let us concentrate rather on explaining to human beings what we 
want a computer to do” (Knuth 1984). This is crucial if you are collaborating with other people, which 
is something that most digital research projects require. Even if you’re working by yourself, however, 
you’ll find that your own code is much easier to understand a few months later if it is surrounded 
with some text that explains what the heck you were thinking when you wrote it. Notebooks are 
enhanced by the possibility of embedding code with interfaces that can be manipulated interactively 
or dynamically updated.

Mathematica has a vast number of very powerful commands, which makes it possible for an individ-
ual programmer to write very short programs to perform sophisticated tasks. The problem is usually 
finding the command that you need for a given problem. Whenever possible, I have provided links to 
the help system, and you should get in the habit of having a documentation window open on your 
screen and reading it continuously while you work. You can also enter commands in plain English 
(see the “What You Need to Know to Get Started” section below). Since every technical domain is 
described with a body of mathematics, another advantage to using Mathematica is that it already 
knows how to operate with the objects of these domains (e.g., matrices). And you have access to a 
huge amount of computable data via Wolfram Alpha, Wikipedia, and other online sources.

Finally a word about the examples used in the book, which are all taken from the history of natural 
history (and most of which focus on Darwin). The techniques presented here can be used for any 
kind of digital research and you don’t need to be interested in Darwin to use them. I decided to focus 
on a subject that I am quite familiar with: I took graduate courses on the history of natural history, 
read many works by Darwin and about him and his milieu, and wrote a book of my own that over-
laps with the subject (Turkel 2013). At the same time, this is a topic that is large enough that no one 
is familiar with even a significant portion of it, and thus one that amply rewards the use of digital 
research methods.

References and Further Reading

◼ Wolfram Language Principles

◼ Knuth, Donald E. "Literate Programming," 1984. 
http://www.literateprogramming.com/knuthweb.pdf

◼ Torrence, Bruce F. & Eve A. Torrence. 2009. The Student's Introduction to Mathematica: A 
Handbook for Precalculus, Calculus, and Linear Algebra. Cambridge: Cambridge University 
Press.

◼ Turkel, William J. 2013. Spark from the Deep: How Shocking Experiments with Strongly Electric 
Fish Powered Scientific Discovery. Baltimore: Johns Hopkins University Press.

◼ Wellin, Paul. 2013. Programming with Mathematica: An Introduction. Cambridge: Cambridge 
University Press.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     5



◼ Wolfram, Stephen. 2010. “Making the World’s Data Computable.”

know

What You Need to Know to Get Started 

Make sure you know your way around the Mathematica interface

Before you go too far, make sure you know how to do basic stuff like execute commands, collapse 
and expand notebook sections, and so on. There is a lot to learn, but don’t worry about getting it all 
at once. Practice a little bit each day.

Here are some useful links to introductory screencasts

Quick tour of Mathematica
First 10 Minutes with Mathematica 
Hands-on Start to Mathematica 

There are plenty more screencasts and videos available at the Wolfram Research site. There is also 
a collection of tutorials.

It is a good idea to learn the keystrokes for the things that you do all the time so you feel more 
comfortable using Mathematica.

Keyboard shortcut listing
Notebook shortcuts

You can add hyperlinks to your notebook by highlighting some text and choosing Insert→Hyperlink 
from the menu.  When you click on a hyperlink it opens in your default browser.

The Mathematica documentation is amazing

If you come across a command that you haven’t encountered before, you can get help by typing a 
question mark and the name of the command and then evaluating it (i.e., pressing "↵ )

? Import

If you need more help, you can click on the little double arrow (%) to open the help browser on your 
own machine.

You can also open the help browser at any time by pressing the F1 key.

The documentation is also available online at

Wolfram Mathematica Documentation Center

Here are some screencasts about Mathematica’s help system

How to Search for Help
How to Use the Virtual Book
How to Use the Suggestions Bar
How to Use the Input Assistant
How to Find Available Options
How to Find Information about Functions

There is also a very useful list of Common “How Tos” at

How To Topics

How to input unusual characters

Mathematica includes a complete system for typesetting mathematical expressions and other 
technical prose. If you need to input an unusual character, the first thing you should try is using one 
of the Palettes.

6     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Mathematica includes a complete system for typesetting mathematical expressions and other 
technical prose. If you need to input an unusual character, the first thing you should try is using one 
of the Palettes.

How to Use Palettes

When you hover over an entry in the palette, a tooltip will show you the characters you have to type 
to enter the same thing from the keyboard. If you need a particular character often, it is usually 
worth learning the keystrokes required to create it.

Commenting out code

If you don’t want code to execute, you can select it and then use &/ to add or remove comment 
markers

(*Print["By default this is commented out"]*)

When all else fails try asking in plain English

Mathematica has direct access to the Wolfram Alpha computational knowledge engine. You can 
type a single equals sign at the beginning of an input line to use free-form linguistics to generate 
Mathematica output.

picture of a platypus »
Result

'

If you use a double equals sign at the beginning of an input line you can generate full Wolfram 
Alpha output in your notebook.

Voyage of the Beagle(

As we will see, both of these options can be used to incorporate computable data into Mathematica 
programs.

If you already have some programming experience...

... start with the following links.    

Fast Introduction for Programmers
Wolfram Language Principles and Concepts
Notes for Programming Language Experts
Mathematica Stack Exchange

Leonid Shifrin also has an open access (BY-NC-SA) textbook

Mathematica Programming: An Advanced Introduction (2008/9)

ch01

Chapter 01: Analyzing Text

Overview

We begin with text because almost every research project involves extensive reading and writing, 
even if your ultimate product will take a non-textual form. In some cases you will need to do a close 
reading of a text; in others you may be able to learn what you need to know simply by skimming or 
scanning it. Either way, human reading can be complemented by various kinds of machine reading. 
The simplest of these is a study of the frequency of words appearing in the text.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     7



Basic Examples

A sample text: Darwin’s On the Origin of Species
Digital sources come in many forms, both human-readible and machine-readible. One of the easiest 
to process is the raw text file. (Raw text is also known as ASCII text, for the method used in encod-
ing the characters. More about this later). Mathematica includes a number of text files to experiment 
with. We will begin with Darwin’s On the Origin of Species (1859). The following command retrieves 
the text and assigns it to be the value of the symbol origin. When we put a semicolon at the end of a 
line like this, we are telling Mathematica that we want it to supress any output that it might otherwise 
return to our notebook. In this case, if we were to omit the semicolon, the entire text of Origin would 
be pasted in.

All reserved keywords in Mathematica begin with a capital letter, so it is a good idea to name your 
own symbols with a lowercase letter (as we do with origin).

You need to evaluate each cell of code when you get to it. Use your mouse to select the bracket 
shaped cursor at the far right of the line below, hold down " and press ↵. The word ‘origin’ should 
turn from blue to black.

origin = ExampleData[{"Text", "OriginOfSpecies"}];

In Mathematica, we can use the Short command to look at something which may be quite large. In 
this case, origin is a whole book, so we just want to see a bit of it. Evaluate the cell below by select-
ing its cursor, holding down " and pressing ↵.

Short[origin]

That is pretty short. We can see a bit more of the text by giving the Short command an option which 
tells it about how many lines we want to see. Notice that the elipses (...) indicate the portion in the 
middle which has been removed.

Short[origin, 10]

The Head command tells us what something is. Our text is currently a string, an ordered sequence 
of characters.

Head[origin]

We can start our analysis of the text simply by counting the total number of words in it. Note that this 
is a count of word tokens rather than word types. In the example below, note how each instance of 
the word ‘I’ (that is, each token of the word) is counted separately.

WordCount["I came, I saw, I conquered."]

Head["I came, I saw, I conquered."]

Because strings may contain punctuation marks and whitespace (blank spaces, tabs, and so on), 
we need to enclose them in double quotation marks when we type them in so that Mathematica 
knows where they begin and end. So how many words are there in Origin? We can find out with the 
following command. We don’t have to enclose the symbol origin in quotation marks, because Mathe-
matica already knows it is a string.

WordCount[origin]

When you learn a new command, like Short, Head or WordCount, it is a good idea to spend a few 
moments looking at the documentation page for each.

Working with a piece of the text
Our whole text is almost 150 thousand words long. Let’s take a smaller sample of it to explore. We 
can use the StringTake command to select a certain number of characters and assign them to a 
new symbol. These characters might be letters, numbers, punctuation or whitespace. When we take 
the first five thousand characters of our text, we are not sure where the cutoff point will be. We 
probably will end up splitting a word in two. Once again, the value returned will be quite long so we 
supress the output with a semicolon, then use Short to look at part of it.

8     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Our whole text is almost 150 thousand words long. Let’s take a smaller sample of it to explore. We 
can use the StringTake command to select a certain number of characters and assign them to a 
new symbol. These characters might be letters, numbers, punctuation or whitespace. When we take 
the first five thousand characters of our text, we are not sure where the cutoff point will be. We 
probably will end up splitting a word in two. Once again, the value returned will be quite long so we 
supress the output with a semicolon, then use Short to look at part of it.

origin5K = StringTake[origin, 5000];

Short[origin5K, 10]

This new text is also a string. It contains far fewer word tokens. We can also count the number of 
characters in the string by using the StringLength command.

Head[origin5K]

WordCount[origin5K]

StringLength[origin5K]

We can segment this text into separate sentences with the TextSentences command. We assign 
the output of the command to a new symbol. This, however, is not a string. It is a list of strings. In 
Mathematica, lists are enclosed in curly braces { } and list elements are separated by commas. The 
'n% indicates that n elements from the middle are not shown. In this case, each element is a 
separate sentence.

origin5KSentences = TextSentences[origin5K];

Short[origin5KSentences, 20]

Head[origin5KSentences]

We can count the number of elements in a list with the Length command.

Length[origin5KSentences]

The chapter title, ‘INTRODUCTION’, counts as a sentence here because it ends in a period. The 
final sentence, which has been interrupted by our use of the StringTake command, is also counted 
as a sentence. Mathematica has correctly recognized that the periods in ‘H.M.S.’ do not mark 
sentence boundaries. The method is not perfect, however, and occasionally it will be confused by 
punctuation. 

Counting words per sentence
We can see that the first sentence is pretty long. In order to count the length of each sentence, we 
can make use of a very powerful operation, known as Map. There is more information about Map in 
the ‘Programming with Mathematica’ section below. What the following command says is ‘apply the 
WordCount function to each element of the origin5KSentences list and return the results as a list.’ 
For convenience, we will again assign this result to a symbol.

origin5KSentenceLengths = Map[WordCount, origin5KSentences]

Head[origin5KSentenceLengths]

Length[origin5KSentenceLengths]

We can visualize this list with the ListPlot command. The Filling→Axis option draws little lines from 
each point down to the x axis. The AxesLabel option provides labels for the x and y axes of the 
figure. In an input cell you can make the → character by typing in a dash followed by a greater than 
sign -> then pressing the space bar. Or you can type (->(.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     9



ListPlot[origin5KSentenceLengths, Filling → Axis,
AxesLabel → {"Sentence Number", "Length in Words"}]

Note that what we are counting here are word tokens. Even in a short text like this one, some word 
types (such as ‘the’) will be represented by many tokens. Others (such as ‘absolutely’) only appear 
once.

Parts and spans of lists
We might be interested in measuring the average sentence length for this part of the text, but if we 
include the chapter title it will skew our results, since it is very much shorter than the other sen-
tences. We don’t want to include the last sentence either, since it is only partial. We need a way of 
referring to and selecting parts of a list. The Part command does this.

Part[origin5KSentences, 1]

Part[origin5KSentences, 2]

The tenth sentence is particularly short. When we look at it, we can see that Mathematica acciden-
tally split one sentence into two. We could repair this by joining the two sentence pieces back 
together but we won’t bother right now.

Part[origin5KSentences, 10]

The 26th sentence seems particularly long. We can check to see that is indeed the case.

Part[origin5KSentences, 26]

Here is the last, interrupted, sentence...

Part[origin5KSentences, 27]

Another way of representing a part of a list is with a pair of square brackets. This is the same as the 
previous command.

origin5KSentences[[27]]

In Mathematica, these can also be represented with special characters that are created using ([[( 
and (]]( . This notation is equivalent to the two previous commands.

origin5KSentences〚27〛

Mathematica also has a special notation for counting from the end of list. You can use negative 
numbers like this:

origin5KSentences〚-1〛

origin5KSentences〚-2〛

We can refer to a range of elements by using a command called Span, which is represented by a 
pair of semicolons. Study the examples below. Here is Part, which you have already seen.

Part[{a, b, c, d}, 1]

Another way of writing Part

{a, b, c, d}[[1]]

Here is an example of Span

{a, b, c, d}[[1 ;; 2]]

This can also be written as

Part[{a, b, c, d}, Span[1, 2]]

10     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Here is another example of Span, written with the more terse notation

{a, b, c, d}[[2 ;; 3]]

Using the special characters for the pairs of square brackets

{a, b, c, d}〚2 ;; 3〛

I have emphasized the different ways write Part and Span because you usually need to know the 
name of a command to look it up in the documentation, but almost all of the code examples that you 
see will use the abbreviated syntax. 

Average sentence length
Now that we know how to refer to and select pieces of lists, we can return to the problem at hand. 
We are interested in averaging the lengths of all of the sentences in origin5KSentences except the 
first and last, so the span that we are interested in is 2;;-2. We have already assigned the list of 
sentence lengths to origin5KSentenceLengths, so we can use the Mean command to find the 
average that we are interested in.

Mean[origin5KSentenceLengths〚2 ;; -2〛]

Unless directed otherwise, Mathematica does not convert rational numbers (fractions) to their 
decimal equivalents. In this case we want the decimal number, so we can convert the output of the 
Mean expression using the N command. Using two slashes like this, followed by a command, tells 
Mathematica to use the output of one expression as the input of the following one. There is more 
information about this in the ‘Programming with Mathematica’ section below.

Mean[origin5KSentenceLengths〚2 ;; 26〛] // N

The average sentence length for the first part of the introduction to Origin is 33.84 word tokens long 
(setting aside the problem of accidentally splitting the tenth sentence into two parts). In the section 
below on ‘Generalizing the Examples’ we look at sentence lengths for the whole book.

Determining word frequencies
We can learn a lot about a text by seeing which words occur more or less frequently. Some words, 
such as ‘the’, ‘of’, ‘or’ and ‘she’ occur frequently in most texts. They are crucial to the meaning of the 
text but they don’t help to distinguish it from other texts. Other words, like ‘geological’, may occur 
relatively infrequently in normal use but very frequently in particular texts (like Origin).

We can use the WordCounts command to count the tokens in a string. The IgnoreCase→True 
option tells the following command to ignore capitalization, counting ‘When’ and ‘when’ as two 
different tokens of the same word type. This command returns its results in the form of an associa-
tion. 

origin5KWordFreqs = WordCounts[origin5K, IgnoreCase → True];

Head[origin5KWordFreqs]

In an association, keys are paired with values. Here the keys are word types that appear in the text, 
and the values are the number of times each appears (its frequency). If we know that a word 
appears in the text, we can look it up in the association like this:

origin5KWordFreqs["naturalist"]

So the word “naturalist” appears twice in the first part of the Introduction to Origin. Here is a word 
type that does not appear in that portion of the text.

origin5KWordFreqs["naturist"]

Let’s get an idea of what an association looks like. We can see that it is delimited using a pair of 
characters, an angle bracket and the vertical bar )...*.  Elements are separated by commas, as 
with a list. As with lists, we can use Length to find the number of elements in an association.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     11



Let’s get an idea of what an association looks like. We can see that it is delimited using a pair of 
characters, an angle bracket and the vertical bar )...*.  Elements are separated by commas, as 
with a list. As with lists, we can use Length to find the number of elements in an association.

Short[origin5KWordFreqs, 6]

Length[origin5KWordFreqs]

Since each word type occurs only once in the word frequency association, this shows us that there 
are about 380 word types in the first five thousand characters of Origin. Some of those, like the 
lowercase ‘c’ that resulted when we accidentally cut a word in half, aren’t really word types. Earlier 
we discovered there are 862 word tokes in the first five thousand characters of Origin (and, again, 
some of those aren’t real words either). In both cases, however, we now have good estimates that 
we could compare with, say, the number of word types and tokens appearing in the first 5000 
characters of another 19th-century work.

We can see that the WordCounts command has sorted the entries in the association in order of 
descending frequency. This is usually what we want.

Each entry in the origin5KWordFreqs association consists of a Rule associating a key to a value. In 
the rule
the → 44

“the” is the key (a word type), and 44 is its value (the number of tokens). We can get a list of distinct 
words in this part of the text by requesting all of the keys in the association. We wrap the command 
in Short to abbreviate the list for display.

Short[Keys[origin5KWordFreqs], 5]

We can also get all of the values, too.

Short[Values[origin5KWordFreqs], 5]

If we visualize the distribution of frequencies, we find that a few words occur very frequently, and a 
lot of words occur very infrequently. This is known as Zipf’s Law. Here we use the ListLinePlot 
command, which is like ListPlot except it draws a line from one point on the graph to the next. We 
use the PlotRange→Full option to tell Mathematica not to cut off any portion of the figure. Try copy-
ing the code cell and removing that option to see how it changes the resulting figure.

ListLinePlot[Values[origin5KWordFreqs], PlotRange → Full,
AxesLabel → {"Word Number", "Number of Occurences"}]

In the figure above, “the” is word number 1, the most frequent word type. It occurs 44 times. The 
next most frequent word type is “of”, which occurs 37 times. It is word number 2. Word number 3 is 
“to”, which occurs 33 times, and so on.

Word clouds and stopwords
One common way to visualize word frequency information is in the form of a word cloud, where the 
font size of each word type is scaled to its frequency. These are quite easy to create in Mathemat-
ica. We can see that the most common words (‘the’, ‘of’, ‘to’) tell us little about what is distinct in this 
text. These words are known as stopwords.

WordCloud[origin5KWordFreqs]

To make the word cloud visualization more informative, we want to remove the stopwords before 
plotting it. We can use the DeleteStopwords command to remove the stopwords from our text 
string before counting words. This visualization gives us a much better idea of what this particular 
text is about.

origin5KWordFreqsNoStop =
WordCounts[DeleteStopwords[origin5K], IgnoreCase → True];

12     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



WordCloud[origin5KWordFreqsNoStop]

The DeleteStopwords command only works for English, at least right now, but you will learn 
another method below which lets you remove arbitrary stopwords. 

Searching through the text
Looking at the word cloud, we can see that the word ‘species’ plays an important role in this text. It 
would be nice to be able to quickly look at those places where it occurs. One way to do this is to first 
break our text into a list of words with the TextWords command.

origin5KWords = TextWords[origin5K];

Short[origin5KWords, 5]

It is often convenient to normalize the text: convert it to lowercase and remove all diacritics (accent 
characters). The following command shows how to do this.

origin5KWordsNormalized = ToLowerCase[RemoveDiacritics[origin5KWords]];

Short[origin5KWordsNormalized, 5]

Now we can locate instances of a particular word token in the list, like ‘species’, with the Position 
command. This shows us that the 53rd word in the normalized word list is ‘species’, as is the 261st, 
and so on. For the time being, ignore the extra set of curly braces around each of the positions in 
the result list. These will become important later on. 

Position[origin5KWordsNormalized, "species"]

We can use the Span command to look at five words on either side of the first instance of ‘species’ 
(position 53) in the list.

origin5KWordsNormalized〚48 ;; 58〛

Here is the context in which the last token of ‘species’ appears in this part of the text (position 675).

origin5KWordsNormalized〚670 ;; 680〛

We don’t want to have to do this by hand for each instance of the word, however. The process of 
looking at the context for a particular keyword is automated in the ‘Generalizing the Examples’ 
section below.

Summary
We began our study of digital research methods with text, since that is the most common kind of 
source for most research projects, and with raw text files, since they are the easiest to process. 
Whether we need to read a text closely or not, we can complement our understanding of the text 
with computational analyses. Some of the simplest of these methods include counting words in 
sentences and sections, and determining the frequency with which different words appear. We also 
began to consider ways of searching through texts and studying words in context, two problems that 
will become easier after we study pattern matching in Chapter 2.

In addition to numbers, we worked primarily with three kinds of fundamental constructs in the Mathe-
matica language: strings, lists and associations. These will play a significant role in most of our 
digital research methods.

Generalizing the Examples

Studying sentence lengths across the whole book
In the ‘Basic Examples’ section above we measured sentence lengths for the sentences appearing 
in the first 5000 characters of the text. The code below plots sentence lengths for the whole of 
Origin. It takes a little while to run because it is doing a lot of analysis.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     13



In the ‘Basic Examples’ section above we measured sentence lengths for the sentences appearing 
in the first 5000 characters of the text. The code below plots sentence lengths for the whole of 
Origin. It takes a little while to run because it is doing a lot of analysis.

originSentences = TextSentences[origin];
originSentenceLengths = Map[WordCount, originSentences];

ListPlot[originSentenceLengths, Filling → Axis,
AxesLabel → {None, "Length in Words"}, ImageSize → Full, PlotRange → Full]

Note that there appear to be vertical white lines at regular intervals. These indicate portions of the 
text where the sentences are shorter than fifteen or twenty words. Why might this be the case?

The first one of these gaps appears somewhere in the first two hundred sentences. Let’s zoom in to 
plot that region by using Part to select part of the list of sentence lengths. Using the PlotRange→15 
option for ListPlot trims off the top of the graph. Looking at the next graph, it is pretty clear that 
there is a run of short sentences between positions 50 and 70.

ListPlot[originSentenceLengths〚1 ;; 200〛, Filling → Axis,
PlotRange → 15, AxesLabel → {None, "Length in Words"}, ImageSize → Full]

We can simply list these sentences and see if we can figure out what is going on. Sending the 
output through the TableForm command puts one sentence on each line. Right after the chapter 
title, we can see that there are a number of very short sentences that describe the content of the 
chapter.

originSentences〚50 ;; 70〛 // TableForm

Now that we know that chapter titles appear in uppercase and that they might be followed by a 
number of short, summary phrases, it would be nice to search through the whole text and see if this 
pattern continues. One approach might be to use StringPosition to locate the second chapter title

StringPosition[origin, "CHAPTER 2"]

Then use StringTake to grab the next few hundred characters, TextSentences to break them into 
sentences, and TableForm to lay the results out with one sentence per line.

StringTake[origin, {79817, 79817 + 300}] // TextSentences // TableForm

We could continue in this vein. But in Chapter 2 we will learn about pattern matching, which makes 
this kind of searching and analysis much easier.

Defining a function for displaying the context of a word
In the ‘Basic Examples’ section above, we used Position to find the locations where the word 
‘species’ appeared in the normalized word list, then looked at words to either side. Although we did 
this in a number of steps, it would be much more convenient if we could just type in one command. 
Programming languages like Mathematica allow you to define your own functions to extend the 
language. We will do that for word searching.

Our sequence of steps looked like this

origin5KWords = TextWords[origin5K];
origin5KWordsNormalized = ToLowerCase[RemoveDiacritics[origin5KWords]];
Position[origin5KWordsNormalized, "species"]

At each intermediate step, we saved the output by assigning it to a symbol like origin5KWords. 
When you are first developing a workflow, it is a good idea to do this so that you can check your 
work at each stage. (The process of creating a series of intermediate steps is visualized in the 
‘Further Exploration’ section below). Once you know what steps you want to apply, however, you 
don’t have to save intermediate outputs unless you know you are going to want them for later 
analysis. We can roll up multiple steps into a single command by nesting them as follows.

14     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



At each intermediate step, we saved the output by assigning it to a symbol like origin5KWords. 
When you are first developing a workflow, it is a good idea to do this so that you can check your 
work at each stage. (The process of creating a series of intermediate steps is visualized in the 
‘Further Exploration’ section below). Once you know what steps you want to apply, however, you 
don’t have to save intermediate outputs unless you know you are going to want them for later 
analysis. We can roll up multiple steps into a single command by nesting them as follows.

Position[ToLowerCase[RemoveDiacritics[TextWords[origin5K]]], "species"]

This command does in one step what we did in three steps before. Note that it is still specific to the 
string we are processing (origin5K) and the keyword we are searching for (“species”). In order to 
make it more general-purpose, we want to substitute symbols. Let’s use the symbol textstring for the 
text string that we are searching through, and the symbol keyword for the keyword we are interested 
in. That will look like this

Position[ToLowerCase[RemoveDiacritics[TextWords[textstring]]], keyword]

Note that we didn’t put the symbol name keyword in quotes. Next, we have to create the body of the 
function and say something about what kind of inputs it is expecting. The function that we are 
defining is named keywordSearch1. It takes two arguments, a text to search through and a keyword 
to search for. It returns a list of positions. When we specify the arguments in the function definition, 
we have to use named patterns (more about these later) so each argument name is followed by a 
single underscore character.

keywordSearch1[textstring_, keyword_] :=
Position[ToLowerCase[RemoveDiacritics[TextWords[textstring]]], keyword]

Now we can try using our function as follows

keywordSearch1[origin5K, "species"]

When we call the function, the symbol textstring inside the function is assigned the value of orig-
in5K, and the symbol keyword inside the function is assigned the value of the string “species”. The 
function returns a list of positions.

This is all very well and good, but it would be better if our function actually returned the context 
surrounding each token of the keyword. In order to get it to do this, we are going to have to make a 
few changes. First, for reasons that will soon become more clear, we will want our list of positions to 
be a simple list of numbers, and not have the extra curly braces. Mathematica has a command 
called Flatten which will do this. We create a second version of the function which outputs a flat-
tened list.

Flatten[{{a}, {b}, {c}, {d}}]

keywordSearch2[textstring_, keyword_] :=
Flatten[
Position[ToLowerCase[RemoveDiacritics[TextWords[textstring]]], keyword]]

keywordSearch2[origin5K, "species"]

Next, it would be better if we assigned our normalized list of words to a temporary symbol inside of 
the function. We can use the Module command to do this. Our third version of the search function 
looks like this:

keywordSearch3[textstring_, keyword_] :=
Module[{normalized},
normalized = ToLowerCase[RemoveDiacritics[TextWords[textstring]]];
Flatten[Position[normalized, keyword]]]

keywordSearch3[origin5K, "species"]

(You can learn more about why you might use a command like Module in this tutorial on modules 
and local variables.)

Note that the third version of the function returns exactly the same list as the second version. We 
haven’t changed the output with this modification. Our function will be easier to understand (if a bit 
less terse) if we also assign our position list to a different temporary symbol. Here is the fourth 
version, which also returns the same list as the second and third versions. (Changing the way a 
function works internally without changing its inputs or outputs is known as refactoring).

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     15



Note that the third version of the function returns exactly the same list as the second version. We 
haven’t changed the output with this modification. Our function will be easier to understand (if a bit 
less terse) if we also assign our position list to a different temporary symbol. Here is the fourth 
version, which also returns the same list as the second and third versions. (Changing the way a 
function works internally without changing its inputs or outputs is known as refactoring).

keywordSearch4[textstring_, keyword_] :=
Module[{normalized, positions},
normalized = ToLowerCase[RemoveDiacritics[TextWords[textstring]]];
positions = Flatten[Position[normalized, keyword]];
Return[positions]]

keywordSearch4[origin5K, "species"]

Note that we can use the Return command to be explicit about the value that the function should 
return. Otherwise the function will simply return the output of its last command. We still haven’t 
returned the actual contexts for the keyword. The fifth version of our function accomplishes this.

keywordSearch5[textstring_, keyword_] :=
Module[{normalized, positions},
normalized = ToLowerCase[RemoveDiacritics[TextWords[textstring]]];
positions = Flatten[Position[normalized, keyword]];
Return[Map[normalized〚# - 5 ;; # + 5〛 &, positions]]]

Understanding the Map expression in the fifth version of the function requires some background that 
is developed in the ‘Programming with Mathematica’ section below. In the meantime, however, we 
can see that our function now returns a list of contexts in which the keyword appears.

keywordSearch5[origin5K, "species"]

We can try it for a few different keywords

keywordSearch5[origin5K, "geological"]

keywordSearch5[origin5K, "conclusions"]

Being able to study keywords in context is such an important task in textual analysis that we will 
return to it again in more detail later.

Programming with Mathematica

Combining commands
In the discussion on defining functions for doing keyword searching, we noted that it is possible to 
combine multiple commands into one by nesting them. In fact, Mathematica gives the programmer a 
tremendous range of options for putting commands together to achieve a particular result.

Suppose, for example, we want a list of the letters from ‘a’ to ‘g’. The CharacterRange command 
will generate such a list.

CharacterRange["a", "g"]

We can convert them ToUpperCase

ToUpperCase[CharacterRange["a", "g"]]

And put them in Reverse order

Reverse[ToUpperCase[CharacterRange["a", "g"]]]

Nested like this, the command above says ‘first generate a list of characters from ‘a’ to ‘g’, then 
convert them to uppercase, then reverse the list.’ In this chapter, however, we’ve also seen a couple 
of examples that make use of a double forward slash. Known as postfix notation, this allows us to 
write the same commands in different order to get the same result.

16     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



CharacterRange["a", "g"] // ToUpperCase // Reverse

This notation is particularly useful when you want to distinguish conceptually, say, between comput-
ing something and displaying it in a certain way (as we did above when we computed a mean then 
used N with postfix notation to output it as a decimal number.) Postfix notation can also be useful if 
we think of our input as flowing through a series of transformations on its way to becoming output.

There is one other common notational form, and that is infix notation. In Mathematica you can add 
three numbers by writing the Plus command as follows

Plus[2, 3, 4]

But it is more common simply to write

2 + 3 + 4

In this case, the plus sign is infix notation for the Plus command. We have already seen another 
example, the Span command, which uses a pair of semicolons between the beginning and ending 
elements.

{a, b, c, d, e}〚2 ;; 3〛

Infix notation can be quite useful for commands that are conceptualized as joining things together. 
Mathematica has an Join command for joining lists

Join[{a, b}, {c, d, e}]

If you wish, you can write this using infix notation as

{a, b}~Join~{c, d, e}

Later we will make use of a command called StringJoin which does the same thing for strings. It 
can be written in either of the forms shown below.

StringJoin["abc", "de"]

"abc" <> "de"

Bag of words
Here is another example of combining individual commands to transform an input into a desired 
output. Many methods used in the statistical analysis of text treat text as a bag of words. In the bag 
of words representation, text is normalized, word order is lost and only word types are kept. The 
following example converts a longish sentence from Origin into a bag of words.

origin5KSentences〚26〛

origin5KSentences〚26〛 // ToLowerCase // TextWords // Union

If we wanted to delete stopwords, too, we could add that command to our chain.

origin5KSentences〚26〛 // ToLowerCase // TextWords // DeleteStopwords // Union

Mathematica also has a prefix notation which effectively allows us to reverse the above order. Later 
we will see examples where this is particularly useful.

Union@TextWords@ToLowerCase@origin5KSentences〚26〛

Union@DeleteStopwords@TextWords@ToLowerCase@origin5KSentences〚26〛

Pure functions and more about Map
Sometimes it is convenient to be able to use a custom function without assigning it to a symbol. For 
example, suppose we wanted to make a list containing three copies of something, anything. (Not 
sure why we’d want to do this, but stick with me.) We could define a function like this

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     17



Sometimes it is convenient to be able to use a custom function without assigning it to a symbol. For 
example, suppose we wanted to make a list containing three copies of something, anything. (Not 
sure why we’d want to do this, but stick with me.) We could define a function like this

threeCopies[x_] :=
{x, x, x}

threeCopies[3]

threeCopies["dog"]

We have already seen that the Map command allows us to apply a function to each element of a list 
and return a list of the results. So we could do something like this, too

Map[threeCopies, {"badger", "cat", "dog"}]

But if we only want to use the threeCopies function inside of Map statements, we don’t need to go 
through the trouble of defining it separately. Instead, we can use a pure function to do the same 
thing. In a pure function, we use a pound sign (#) to stand for the argument of the function, and we 
put an ampersand (&) at the end of it. Here is a pure function to replace threeCopies

{#, #, #} &

Here is the equivalent to the above command

Map[{#, #, #} &, {"badger", "cat", "dog"}]

If we change our mind and actually want lists with four copies instead of three, we just have to 
modify the pure function a little bit. We don’t need to define another separate, standalone function.

Map[{#, #, #, #} &, {"badger", "cat", "dog"}]

The use of pure functions gets easier to understand with repeated exposure. The Range command 
returns a list of numbers

Range[10]

Here we use Map and a pure function to add 42 to each number between 1 and 10.

Map[# + 42 &, Range[10]]

We can test to see whether one number is less than another with Less

Less[7, 13]

Less[13, 7]

Here is how we use Map and a pure function to test a whole list of numbers to see if they are less 
than 7

Range[10]

Map[Less[#, 7] &, Range[10]]

The name of the ampersand when used in pure functions is Function, and the name of the pound 
sign is Slot.

Further Exploration

Getting more information about ExampleData
ExampleData in Mathematica, including texts, has metadata that can be retrieved by asking for 
Properties. Each of these properties can then be requested separately. What properties are avail-
able for Origin?

ExampleData[{"Text", "OriginOfSpecies"}, "Properties"]

18     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Who wrote the text?

ExampleData[{"Text", "OriginOfSpecies"}, "Author"]

What is the full title for the publication?

ExampleData[{"Text", "OriginOfSpecies"}, "FullTitle"]

What language is the text written in?

ExampleData[{"Text", "OriginOfSpecies"}, "Language"]

Visualizing workflows as networks
If you give Mathematica a list of Rules of the form a→b, you can use LayeredGraphPlot to visual-
ize the resulting network. The VertexLabeling→True option associates each node (or vertex) of the 
network with its name. The ImageSize→Small option scales the output so the graph is relatively 
small.

LayeredGraphPlot[{a → b , a → c, b → c, c → d, c → e},
VertexLabeling → True, ImageSize → Small]

We can also associate an edge (i.e., a connection between two vertices) with a label as follows...

LayeredGraphPlot[
{{a → b, "1st"} , {a → c, "3rd"}, {b → c, "2nd"}, {c → d, "4th"}, {c → e, "5th"}},
DirectedEdges → True, VertexLabeling → True, ImageSize → Small]

Let’s make use of LayeredGraphPlot to visualize the sequence of transformations and intermediate 
steps by which we analyzed part of Origin of Species and ultimately visualized our results. We 
started by assigning the full text of Origin to the symbol origin with ExampleData, then took the first 
5000 characters of the text. In our network we will use ORIG to represent the original text.

LayeredGraphPlot[
{{"ORIG" → "origin", "ExampleData"}, {"origin" → "origin5K", "StringTake"}},
VertexLabeling → True, ImageSize → Small]

Note that we are using strings to label our edges and vertices. We don’t want Mathematica to use 
the actual symbols or functions. Note also that LayeredGraphPlot takes care of figuring out the 
layout of the network for us. We do have the ability to alter the layout if we don’t like it, but we will 
mostly stick to defaults for now.

Next we used TextSentences to generate a list of sentences, then used Map and WordCount to 
determine how long each sentence was. We visualized the results with ListPlot. Let’s use VIS to 
represent a visualization in our workflow. As our figure starts to become more crowded, we increase 
the ImageSize.

LayeredGraphPlot[
{{"ORIG" → "origin", "ExampleData"}, {"origin" → "origin5K", "StringTake"},
{"origin5K" → "origin5KSentences", "TextSentences"},
{"origin5KSentences" → "origin5KSentenceLengths", "Map WordCount"},
{"origin5KSentenceLengths" → "VIS", "ListPlot"}},

DirectedEdges → True, VertexLabeling → True, ImageSize → Medium]

Next we used WordCounts on origin5K to generate an association list called origin5KWordFreqs, 
then we used WordCloud to visualize this. As you add more vertices and edges (especially labeled 
ones) figures become crowded. Here we use the VertexCoordinateRules option to place each 
vertex in a specific position relative to the others.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     19



LayeredGraphPlot[
{{"ORIG" → "origin", "ExampleData"}, {"origin" → "origin5K", "StringTake"},
{"origin5K" → "origin5KSentences", "TextSentences"},
{"origin5KSentences" → "origin5KSentenceLengths", "Map WordCount"},
{"origin5KSentenceLengths" → "VIS", "ListPlot"},
{"origin5K" → "origin5KWordFreqs", "WordCounts"},
{"origin5KWordFreqs" → "VIS", "WordCloud"}}, DirectedEdges → True,

VertexLabeling → True, ImageSize → Medium, VertexCoordinateRules →
{{0, 2}, {0, 1}, {0, 0}, {-1, -1}, {-1, -2}, {0, -3}, {2, -1}}]

But the stopwords were dominating the visualization, so we started again with origin5K and applied 
some different transformations. Our overall workflow looked like this:

LayeredGraphPlot[
{{"ORIG" → "origin", "ExampleData"}, {"origin" → "origin5K", "StringTake"},
{"origin5K" → "origin5KSentences", "TextSentences"},
{"origin5KSentences" → "origin5KSentenceLengths", "Map WordCount"},
{"origin5KSentenceLengths" → "VIS", "ListPlot"},
{"origin5K" → "origin5KWordFreqs", "WordCounts"},
{"origin5KWordFreqs" → "VIS", "WordCloud"},
{"origin5K" → "origin5KWordFreqsNoStop", "WordCounts DeleteStopwords"},
{"origin5KWordFreqsNoStop" → "VIS", "WordCloud"}}, DirectedEdges → True,

VertexLabeling → True, ImageSize → Large, VertexCoordinateRules →
{{1, 2}, {1, 1}, {1, 0}, {-1, -1}, {-1, -2}, {2, -3}, {2, -1}, {5, -1}}]

When you are first developing a workflow, you often go down a number of blind alleys, do things 
inefficiently, and save intermediate steps that you end up not needing. Taking a moment to visualize 
your workflow can help you think of ways to make it more efficient or suggest operations you haven’t 
yet explored. It can also serve as a useful form of documentation if you put a project aside for a 
while. Imagine coming back to the Darwin analysis in six months or a year and trying to figure out 
what origin5KSentenceLengths was and where it came from. Being able to look at an image like this 
helps you to reorient yourself quickly.

Mathematica Commands to Review

◼ BE: Basic Examples, GE: Generalizing the Examples, PM: Programming with Mathematica, FE: 
Further Exploration

◼ Association (BE)

◼ CharacterRange (PM)

◼ DeleteStopwords (BE)

◼ ExampleData (BE)

◼ Flatten (GE)

◼ Function (PM)

◼ GraphPlot (FE)

◼ Head (BE)

◼ Join (PM)

◼ Keys (BE)

◼ Length (BE)

◼ Less (PM)

◼ List (BE)

◼ ListLinePlot (BE)

20     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



◼ ListPlot (BE)

◼ Map (BE)

◼ Mean (BE)

◼ Module (GE)

◼ Part (BE)

◼ Position (BE)

◼ Postfix (PM)

◼ Prefix (PM)

◼ Range (PM)

◼ RemoveDiacritics (BE)

◼ Return (GE)

◼ Reverse (PM)

◼ Rule (FE)

◼ Short (BE)

◼ Slot (PM)

◼ Span (BE)

◼ String (BE)

◼ StringJoin (PM)

◼ StringLength (BE)

◼ StringPosition (GE)

◼ StringTake (BE)

◼ TableForm (GE)

◼ TextSentences (BE)

◼ ToLowerCase (BE)

◼ ToUpperCase (PM)

◼ Union (PM)

◼ Values (BE)

◼ WordCloud (BE)

◼ WordCount (BE)

Problems

Problem 1.1
Input: "This is a TEST"
Output: {This, is, a, TEST}

TextWords["This is a TEST"]

Problem 1.2
Input: {g,a,a,e,c,f,b,d,h}
Output: {a,b,c,d,e,f,g,h}

Union[{g, a, a, e, c, f, b, d, h}]

Problem 1.3
Input: "This is a TEST"
Output: {THIS,IS,A,TEST}

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     21



Problem 1.3
Input: "This is a TEST"
Output: {THIS,IS,A,TEST}

TextWords[ToUpperCase["This is a TEST"]]

TextWords@ToUpperCase@"This is a TEST"

"This is a TEST" // ToUpperCase // TextWords

Problem 1.4
Input: {a,b,c,d,e,f,g,h}
Output: {c,d}

{a, b, c, d, e, f, g, h}〚3 ;; 4〛

CharacterRange["a", "g"]〚3 ;; 4〛

Problem 1.5
Input: {{a,b},{c,d},{e,f},{g,h}}
Output: {b,d,f,h}

{{a, b}, {c, d}, {e, f}, {g, h}}〚All, 2〛

{{a, b}, {c, d}, {e, f}, {g, h}}〚1 ;; 4, 2〛

{{a, b}, {c, d}, {e, f}, {g, h}}〚{1, 2, 3, 4}, 2〛

Problem 1.6
Input: {{a,b},{c,d},{e,f},{g,h}}
Output: {h,g,f,e,d,c,b,a}

Reverse[Flatten[{{a, b}, {c, d}, {e, f}, {g, h}}]]

Problem 1.7
Input: {{a,b},{c,d},{e,f},{g,h}}
Output: {g,h,e,f,c,d,a,b}

Flatten[Reverse[{{a, b}, {c, d}, {e, f}, {g, h}}]]

Problem 1.8
Input: {{a},{b,c},{d,e,f},{g},{h}}
Output: {1,2,3,1,1}

Map[Length, {{a}, {b, c}, {d, e, f}, {g}, {h}}]

Problem 1.9
Input: "This is a test"
Output: {4,2,1,4}

Map[StringLength, TextWords["This is a test"]]

Problem 1.10
Input: "This is a test"
Output: "test"

StringTake["This is a test", -4]

StringTake["This is a test", {11, 14}]

Problem 1.11
Input: "The quick brown fox jumped over the lazy dog"
Output: {{1,3},{33,35}}

22     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



StringPosition["The quick brown fox jumped over the lazy dog",
"the", IgnoreCase → True]

StringPosition[
ToLowerCase["The quick brown fox jumped over the lazy dog"], "the"]

Problem 1.12
Input: {d,a,d,a,g,a,g,a}
Output: {{2},{4},{6},{8}}

Position[{d, a, d, a, g, a, g, a}, a]

Problem 1.13
Input: {{d,a,d,a},{g,a},{g,a}}

Output: 
d a d a
g a
g a

TableForm[{{d, a, d, a}, {g, a}, {g, a}}]

Problem 1.14
Input: 12
Output: {1,2,3,4,5,6,7,8,9,10,11,12}

Range[12]

Problem 1.15
Input: {a,b,c},{d,e},{f}
Output: {a,b,c,d,e,f}

Join[{a, b, c}, {d, e}, {f}]

{a, b, c}~Join~{d, e}~Join~{f}

Exercises

1. (Down the rabbit hole). Mathematica includes a number of other sample texts to 
experiment with. Using the Darwin example above as a guide, explore Lewis Carroll’s Alice 
in Wonderland (1865). You can load the text with the command shown below. Choose a 
portion of the text and analyze the number of words, sentences, and words per sentence. 
Explore word frequencies, and look at a few of the contexts in which some interesting 
keywords appear.

carroll = ExampleData[{"Text", "AliceInWonderland"}];

2. (Sentence lengths). You can get a list of sample texts that are included in Mathematica 
with the command below. Choose a different text and try studying the sentence lengths 
across the whole work. Are there any interesting patterns?

ExampleData["Text"]

3. (Another way to compute word frequencies). The WordCounts command was introduced 
in Mathematica in 2015. Prior to that time, if you wanted to determine word frequencies, 
you had to do it a different way. Try converting one of the sample texts to a word list then 
using the Tally command. Compare your results with the output of WordCounts on the 
same text. You will want to read the Mathematica documentation for the Tally command.

Chapter 02: Pattern Matching

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     23



ch02

Chapter 02: Pattern Matching

Overview

In the first chapter, we learned that we can use word frequencies to get some idea of what a text is 
about, whether we are already familiar with it or not. Starting with a raw text file in the form of a 
string, we learned to count the number of words and sentences, to generate an association contain-
ing word frequencies and to visualize this information in the form of a word cloud. Once we have 
identified some words and phrases that seem to play an important role in the text, the next step is to 
study the contexts in which those expressions appear. To do this effectively, we need to know how 
to match patterns. Mathematica has a very powerful set of tools for matching patterns and for 
transforming them with rewrite rules. Facility with pattern matching will also allow us to create a 
concordance for our text, a display that shows us keywords in context.

Basic Examples

Matching string patterns
Once again, we will be working with Darwin’s Origin of Species. For the time being, we will leave the 
text in the form of one long string. For this example, let’s use the first 20,000 characters.

origin = ExampleData[{"Text", "OriginOfSpecies"}];
origin20K = StringTake[origin, 20000];

Head[origin20K]

StringLength[origin20K]

The StringCases command allows us to search a string for a particular pattern. In order to build a 
pattern, we use the StringExpression command, which allows us to mix explicit strings with more 
general objects that match more than one string.

Suppose we want to find instances of the word ‘domestic’. The StringExpression that we will need 
looks like this

StringExpression["domestic", WordBoundary]

It says match the string ‘domestic’ followed by any character that represents a boundary between 
words. Word boundaries include the beginnings and endings of lines, whitespace, and punctuation 
marks. The value what was returned here shows a shorthand notation for StringExpression, a pair 
of tilde characters. (This is an example of infix notation. There is more information about this in the 
‘Programming with Mathematica’ section of Chapter 1.) The following command shows how we use 
the pattern with StringCases. The word 'domestic' appears four times in lowercase in the first 
20,000 characters of Origin.

StringCases[origin20K, StringExpression["domestic", WordBoundary]]

The next command is equivalent to the previous command, using the shorthand (infix) notation for 
StringExpression.

StringCases[origin20K, "domestic" ~~ WordBoundary]

The word ‘domestic’ also occurs four times with the first character in uppercase.

StringCases[origin20K, "Domestic" ~~ WordBoundary]

Are there any other occurrences? If we don’t want to miss anything, we can use the IgnoreCase→
True option for StringCases.

24     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Are there any other occurrences? If we don’t want to miss anything, we can use the IgnoreCase→
True option for StringCases.

StringCases[origin20K, "Domestic" ~~ WordBoundary, IgnoreCase → True]

If we would like to search for words that begin with a sequence of characters, we can build a more 
general pattern using the StringExpression command. In the example below, three underscores 
stand for a sequence of zero or more characters. (This command is named BlankNullSequence). 
Note that we have had to wrap that pattern in a command called Shortest. Think for a moment 
about what “zero or more characters” means: if not constrained it could potentially match all of the 
characters to the end of the origin20K string. What we want to say is “match zero or more charac-
ters until you hit a word boundary.”

StringCases[origin20K,
"domestic" ~~ Shortest[___] ~~ WordBoundary, IgnoreCase → True]

We see that in addition to the word ‘domestic,’ Darwin also uses ‘domestication’ and ‘domesticated’ 
in this part of Origin. If we only want to see those words (and not instances of ‘domestic’) we can 
use a different pattern. In the following example, WordCharacter followed by two dots stands for a 
sequence of one or more word characters (letters or digits). The two dots are shorthand for the 
Repeated command. The following pattern says ‘find the string “domestic” followed by one or more 
word characters followed by a word boundary.’ Since we say there has to be at least one word 
character following “domestic”, we don’t match the word “domestic”. We would match the word 
“domestics” if it occurred in the text.

StringCases[origin20K,
"domestic" ~~ WordCharacter .. ~~ WordBoundary, IgnoreCase → True]

We can also search for words with a particular ending. Note the increasingly general patterns.

StringCases[origin20K,
WordCharacter .. ~~ "ological" ~~ WordBoundary, IgnoreCase → True]

StringCases[origin20K,
WordCharacter .. ~~ "ical" ~~ WordBoundary, IgnoreCase → True]

StringCases[origin20K, WordCharacter .. ~~ "al" ~~ WordBoundary, IgnoreCase → True]

Making use of WordData
In the case of a pair of related words like ‘domestic’ and ‘domesticate’, the root word is a proper 
substring of the derived form. Not all English words have such clean morphology. Suppose you 
want to look for expressions that contain words derived from or related to the verb ‘decide’. You can 
use Mathematica’s built-in WordData to facilitate your search. The following command shows us 
that there are (at least) four different senses of ‘decide’. 

WordData["decide"]

We can request the InflectedForms property to get other forms of the verb. The inflected forms of 
the verb ‘decide’ are the same for each of the four different senses.

WordData["decide", "InflectedForms"]

If we wanted to search for all of these possibilities, we can see that they all begin with the substring 
‘decid’. So we could use a command like the following. Only one of the inflected forms appears in 
this section of Origin.

StringCases[origin20K,
"decid" ~~ Shortest[___] ~~ WordBoundary, IgnoreCase → True]

The part of the word that we are searching for in the command above is known as the stem. In fact, 
there is an algorithm called Porter Stemming which automatically removes common endings, and 
the Mathematica WordStem command does this. So we could also search for inflected forms as 
follows.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     25



The part of the word that we are searching for in the command above is known as the stem. In fact, 
there is an algorithm called Porter Stemming which automatically removes common endings, and 
the Mathematica WordStem command does this. So we could also search for inflected forms as 
follows.

StringCases[origin20K,
WordStem["decide"] ~~ Shortest[___] ~~ WordBoundary, IgnoreCase → True]

Here is another example, starting with a different verb.

StringCases[origin20K,
WordStem["admire"] ~~ Shortest[___] ~~ WordBoundary, IgnoreCase → True]

If we want to find words that are related to ‘decide’, we can request the MorphologicalSource prop-
erty. Note that this turns up some terms that we wouldn’t have caught when we searched using the 
word stem, like ‘decision’ and ‘decisive’.

WordData["decide", "MorphologicalSource"]

We see that ‘decision’ does occur in our text (but ‘decisive’ does not).

StringCases[origin20K,
"decis" ~~ Shortest[___] ~~ WordBoundary, IgnoreCase → True]

Generating a concordance
We can use string patterns to generate a listing that shows a particular keyword in context. The set 
of all such listings is known as a concordance, or a keyword in context (KWIC) listing. We begin by 
trying to match a pattern which includes the keyword and one following word. In the StringExpres-
sion below, Whitespace matches one or more whitespace characters and WordCharacter fol-
lowed by two dots matches one or more word characters. We send the output through TableForm 
to print one match per line. The following pattern says ‘match the string “domestic” followed by any 
amount of whitespace (blank spaces, tabs, etc.) followed by one or more word characters.’

StringCases[origin20K,
"domestic" ~~ Whitespace ~~ WordCharacter .., IgnoreCase → True] // TableForm

Now we can add a similar sequence on the left to match the preceding word. In doing so, we lose 
one of our instances (domestic pigeons), which we will fix below.

StringCases[origin20K, WordCharacter .. ~~ Whitespace ~~ "domestic" ~~
Whitespace ~~ WordCharacter .., IgnoreCase → True] // TableForm

The problem with the previous expression is that the pattern of word characters interspersed with 
whitespace is too specific to match cases where one sentence ends and another begins. Instead we 
should be looking for sequences of word characters interspersed with sequences of non-word 
characters. The Except command allows us to specify a pattern consisting of anything except what 
we don’t want to match.

StringCases[origin20K,
WordCharacter .. ~~ Except[WordCharacter] .. ~~ "domestic" ~~
Except[WordCharacter] .. ~~ WordCharacter .., IgnoreCase → True] // TableForm

Now suppose we want to see a window of three words to either side of our keyword. In Mathemat-
ica, the With command allows us to temporarily assign a value to a symbol. That can save us a lot 
of typing in a situation like this where we are repeating a pattern over and over. We set the tempo-
rary symbol w to match one or more word characters followed by one or more non-word characters, 
then we use multiple copies of it in our StringExpression.

With[{w = WordCharacter .. ~~ Except[WordCharacter] ..},
StringCases[origin20K, w ~~ w ~~ w ~~ "domestic" ~~

Except[WordCharacter] .. ~~ w ~~ w ~~ w, IgnoreCase → True]] // TableForm

We will clean up the output and turn this into a standalone function in the ‘Programming with Mathe-
matica’ section below.

26     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Capitalized words and phrases
The first word of a sentence in English is usually capitalized. Elsewhere in the sentence capitalized 
words and phrases are often of special interest. Among other things, they may refer to people, 
places, institutions, dates, works of art, acronyms, vessels, brand names, deities or personifications. 
In later chapters we will focus on doing interesting things with these entities, but for now we concen-
trate on the problem of finding them in text.

We start by breaking our long string into a list of sentences, using techniques we learned in Chapter 
1.

origin20KSentences = TextSentences[origin20K];

Head[origin20KSentences]

Length[origin20KSentences]

Next we want to split each of those sentences into a list of words. The Map command makes a task 
like this easy.

origin20KWordLists = Map[TextWords, origin20KSentences];

Head[origin20KWordLists]

The result is still a list, but instead of being a list of strings, it is a list of lists. This kind of structure is 
known as a nested list. If we use the Head command on the first element of the list of word lists, we 
find that it is also a list.

origin20KWordLists〚1〛

Head[origin20KWordLists〚1〛]

Let’s look at the second element in our list of word lists.

origin20KWordLists〚2〛

As expected, the first word is capitalized, but so are  “H.M.S. Beagle,” “I” and “South America.” 
These are the kind of phrases we want to find. The Rest command returns the list with the first 
element removed.

Rest[origin20KWordLists〚2〛]

We can take the first character of a string with StringTake, and test to see if it is uppercase with 
UpperCaseQ. In Mathematica, functions that ask a yes-no question and return either True or False 
are named so they end with a capital Q. We will see more examples later on.

StringTake["Beagle", 1]

UpperCaseQ[StringTake["Beagle", 1]]

Let’s create a small function that tests to see if a word is capitalized. In keeping with the Mathemat-
ica convention, we name this function so it ends in a capital Q.

capitalizedQ[w_] := UpperCaseQ[StringTake[w, 1]]

capitalizedQ["Beagle"]

capitalizedQ["naturalist"]

Now we use the Select command and the function that we just defined to pull out all of the capital-
ized words that occur within the second sentence (note that we don’t include the first word, which is 
always capitalized by convention).

Select[Rest[origin20KWordLists〚2〛], capitalizedQ]

If we want to find all of the capitalized words in this section of Origin, we can build up the desired 
command one step at a time. To begin with, we need to exclude the first word of each sentence. We 
can do this by mapping Rest across our list of word lists. The output will be quite long, so we use 
Short to have a look at it.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     27



If we want to find all of the capitalized words in this section of Origin, we can build up the desired 
command one step at a time. To begin with, we need to exclude the first word of each sentence. We 
can do this by mapping Rest across our list of word lists. The output will be quite long, so we use 
Short to have a look at it.

Short[Map[Rest, origin20KWordLists], 20]

Now that we’ve gotten rid of the first word in each sentence, we don’t care where the sentence 
boundaries are anymore. So we can Flatten the list.

Short[Flatten[Map[Rest, origin20KWordLists]], 20]

We can now Select all of the capitalized words from this list. The Select command pulls out ele-
ments for which a given condition is True. We have few enough results that we don’t have to use 
Short to view them.

Select[Flatten[Map[Rest, origin20KWordLists]], capitalizedQ]

Finally, we want to get rid of duplicates, so we use the Union command to create a bag of words 
representation. (There is more information about this in the ‘Programming with Mathematica’ section 
of Chapter 1.)

Union[Select[Flatten[Map[Rest, origin20KWordLists]], capitalizedQ]]

In a number of cases it would be more useful to have a list of capitalized phrases rather than capital-
ized words. We want to know, in other words, that “South” goes with “America” and “Linnean” goes 
with “Society.” We will return to this problem.

N-gram analysis
A sequence of n words in a text is known as an n-gram. If we provide the WordCounts command 
with a parameter, we can use it to count n-grams rather than words. The results are returned in an 
association

origin20KBigrams = WordCounts[origin20K, 2, IgnoreCase → True];

Head[origin20KBigrams]

Length[origin20KBigrams]

If we look the twenty most common bigrams (i.e., 2-grams) in this part of Origin, we see that they 
almost all contain one or more stopwords. The only exception is ‘organic beings’.

origin20KBigrams〚1 ;; 20〛

Does Darwin describe anything else as ‘organic’ in this part of Origin? In order to answer this ques-
tion, first we use the Keys command to pull all of the bigrams out of the association, then we use 
the Cases command to choose those that have “organic” as the first word and any expression (the 
single underscore) as the second word. (The single underscore is shorthand for a command called 
Blank). We find that in this part of the text, the word “organic” is always followed by “beings”.

Short[Keys[origin20KBigrams], 5]

Cases[Keys[origin20KBigrams], {"organic", _}]

Given this bigram association, we have a different way of searching for places where Darwin used 
the word “domestic” in this part of the text.

Cases[Keys[origin20KBigrams], {"domestic", _}]

We can count the number of times each appears with the following command.

Lookup[origin20KBigrams, Cases[Keys[origin20KBigrams], {"domestic", _}]]

28     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Does Darwin refer to other kinds of ducks or pigeons here than domestic ones? No.

Cases[Keys[origin20KBigrams], {_, "duck"}]

Cases[Keys[origin20KBigrams], {_, "pigeons"}]

Does he refer to wild animals? Only in the phrase “wild parent”.

Cases[Keys[origin20KBigrams], {"wild", _}]

Bigrams that do not contain stopwords
Earlier we noted that the twenty most common bigrams in this part of Origin almost all contain 
stopwords. It would be nice to find the twenty most common bigrams that do not. First we have to 
grab a list of stopwords using the WordData command.

stopwords = WordData[All, "Stopwords"];

Length[stopwords]

Next we make a small function that tests whether a word is in the list of stopwords or not. If the word 
is a member of the stopword list, we want the function to return False and if it is not we want it to 
return True.

nonStopwordQ[w_] := Not[MemberQ[stopwords, w]]

nonStopwordQ["the"]

nonStopwordQ["duck"]

Finally we use the Cases command on the keys of our bigram association. The pattern we are 
searching for is a list containing two items. Each of these can be anything (single underscore) as 
long as it is not a stopword. The pattern?test notation matches an expression only if the test is true 
when applied to the expression. The last step is to use Part to select the first 20 results. Since they 
are ordered by descending frequency, these are the most common bigrams that do not contain 
stopwords.

Cases[Keys[origin20KBigrams], {_?nonStopwordQ, _?nonStopwordQ}]〚1 ;; 20〛

In this part of Origin, Darwin uses the phrase “natural selection” three times.

origin20KBigrams[{"natural", "selection"}]

Note how much information these bigrams provide about the nature of this text.

Capitalized bigrams
In the example above, we used the Ignorecase->True option when creating an association of 
bigrams with the WordCounts command. If we don’t use that option, however, we can find capital-
ized phrases. As before, we need to remove the first word from each sentence, since it will automati-
cally be capitalized. We did this by mapping Rest across our sentences once they had been turned 
into word lists, then flattening the result.

Short[Flatten[Map[Rest, origin20KWordLists]], 20]

The WordCounts command takes a string as input, not a list, so we have to turn this list of words 
back into a string. We do this with the StringRiffle command, which puts whitespace between each 
word.

StringRiffle[{"a", "b", "c", "d"}]

Short[StringRiffle[Flatten[Map[Rest, origin20KWordLists]]], 20]

Now we can compute all the bigrams and use Cases to pull out those with two capitalized words in 
a row. Note in cases where there is a longer capitalized n-gram it is broken into bigrams, as with 
‘VARIATION UNDER DOMESTICATION.’

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     29



Now we can compute all the bigrams and use Cases to pull out those with two capitalized words in 
a row. Note in cases where there is a longer capitalized n-gram it is broken into bigrams, as with 
‘VARIATION UNDER DOMESTICATION.’

origin20KCapBigrams = Cases[
Keys[WordCounts[StringRiffle[Flatten[Map[Rest, origin20KWordLists]]], 2]],
{_?capitalizedQ, _?capitalizedQ}]

Summary
Mathematica provides a very rich set of pattern matching tools that allow us to find examples of 
particular words or phases, to find classes of related words, to see words or phrases in context, and 
to analyze n-gram sequences. This is only the tip of the iceberg, however, and further examples of 
pattern matching are demonstrated in later sections of this chapter. Methods of pattern matching will 
also play an important role in later chapters, when we turn our attention to computable data and to 
some of the techniques of information retrieval.

Some of the pattern-matching commands that we learned were specific to strings, others work on 
lists, associations, or other expressions. We also made use of some of Mathematica’s built-in 
knowledge about the English language via the WordData command.

Generalizing the Examples

Extracting more sensible parts of a text to study
So far we have simply taken the first few thousand characters of Origin when we didn’t want to work 
with the whole text. The problem with this method is that it does not respect the natural boundaries 
within the work. Now that we know how to match string patterns, however, we can select more 
meaningful units to study. One way to do this is to look for internal evidence from text itself. The 
word ‘introduction’ appears at the beginning of the Introduction to Origin, the word ‘chapter’ appears 
at the beginning of each Chapter, and so on. So even though we have been dealing with this book 
as a single long string, we have some evidence about how the author (and/or publisher) wanted the 
book to be understood as a sequence of contained units. Note that, at this point at least, we don’t 
have evidence about how the book was broken into smaller units, especially numbered pages. We 
will deal with that in a later chapter.

Here is a command that pulls out the Introduction. The two underscores are shorthand for a com-
mand called BlankSequence. This pattern stands for any sequence of one or more expressions.

originIntroduction =
StringCases[origin, "INTRODUCTION. " ~~ Shortest[__] ~~ "CHAPTER"]〚1〛;

Short[originIntroduction, 10]

Note that this leaves the word “CHAPTER” at the end of the text string and “INTRODUCTION” at 
the beginning. If we only want the stuff between those two words, we can use a named pattern as 
follows.

Clear[originIntroduction];
originIntroduction =

StringCases[origin, "INTRODUCTION. " ~~ Shortest[x__] ~~ "CHAPTER" → x]〚1〛;
Short[originIntroduction, 10]

Above we use the Clear command to clear the value that has already been assigned to the symbol 
originIntroduction, then we assign a new value to it.

Investigating summary sentences at the beginnings of chapters 
While plotting sentence lengths for Origin in Chapter 1, we noted that there were bursts of short 
sentences at regular intervals. These turned out to be summary sentences printed right after the 
chapter title. Using our new pattern matching skills, we can investigate this characteristic of the book 
more easily. The command below pulls out the chapter titles.

30     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



While plotting sentence lengths for Origin in Chapter 1, we noted that there were bursts of short 
sentences at regular intervals. These turned out to be summary sentences printed right after the 
chapter title. Using our new pattern matching skills, we can investigate this characteristic of the book 
more easily. The command below pulls out the chapter titles.

StringCases[origin,
"CHAPTER " ~~ DigitCharacter .. ~~ Shortest[__] ~~ "."] // TableForm

If we want to see five sentences after each chapter title, we can do it with the following command. 
Note that passing the output through TabView gives us an interface control which puts each chapter 
summary on its own page. Click the chapter numbers to see the corresponding summary.

With[{s = Shortest[__] ~~ "."}, StringCases[origin,
"CHAPTER " ~~ DigitCharacter .. ~~ s ~~ s ~~ s ~~ s ~~ s ~~ s]] // TabView

Finding one word near another
Sometimes you want to know whether two words occur within a certain distance of one another. For 
small enough distances you can use n-grams, but you probably don’t want to compute all the 50-
grams for a text just to see if the word ‘geological’ occurs somewhere near ‘geographical’. Here is a 
function that solves this problem. It takes a text, a pair of strings to search for, and an integer that 
determines the width (in characters) for the search window. A value of 100, for example, means that 
the positions of the first character in each search term should be within 100 characters of one 
another. The details of how this function works are covered in the ‘Further Exploration’ section 
below.

stringFindNear[txt_, str1_, str2_, within_] :=
TabView[Map[StringTake[txt, {#〚1〛 - 100, #〚2〛 + 100}] &,

Select[DeleteCases[Partition[Sort[Join[Map[List[str1, #] &, StringPosition[
txt, str1 ~~ WordBoundary]〚All, 1〛], Map[List[str2, #] &,

StringPosition[txt, str2 ~~ WordBoundary]〚All, 1〛]], #1〚2〛 < #2〚2〛 &],
2, 1], {{x_, _}, {x_, _}}]〚All, 1 ;; 2, 2〛, (#〚2〛 - #〚1〛) ≤ within &]]]

And here are some examples of its use.

stringFindNear[origin20K, "geological", "geographical", 100]

stringFindNear[origin20K, "embryo", "monstrosities", 200]

stringFindNear[origin20K, "cats", "dogs", 400]

Here is what the output looks like if a match is not found within the specified distance.

stringFindNear[origin20K, "cats", "dogs", 100]

We would also like to be able simply to search for a term and see some surrounding context. The 
function below does that.

textSearch[txt_, str_] :=
TabView[Map[StringTake[txt, {#〚1〛 - 100, #〚2〛 + 100}] &,

StringPosition[txt, str ~~ WordBoundary]]]

textSearch[origin, "aphides"]

Programming with Mathematica

A function to display long sources with a scrollbar
We have been using the Short command to abbreviate any output that would be unnecessarily long 
if dumped into our notebook. It would be more convenient, however, to display long sources inside a 
little window with a scrollbar. Mathematica has an extensive set of commands that make it easy to 
build interfaces within notebooks.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     31



We will start with Short and give it a parameter that limits the number of lines to display.

Short[originIntroduction, 5]

We put a box around something with the Framed command.  As usual, we put commands together 
by nesting them (or, more technically, by composing the functions).

Framed[Short[originIntroduction, 5]]

We don't just want to put a box around the string, however.  First we want to put the string onto a 
background that we can resize, then we will put a box around that.  The resizable background is 
called a Pane.

Framed[Pane[Short[originIntroduction, 5]]]

It still looks the same until we tell Mathematica how big we want the Pane to be.  In this case, we 
are saying ‘make the panel take up the whole width of the notebook (i.e., it is Automatic), but make 
the height be 200 pixels.’

Framed[Pane[Short[originIntroduction, 5], {Automatic, 200}]]

Once you start nesting commands, you will often have many layers of brackets nested within one 
another. If you are not sure how the brackets pair up, try triple-clicking on the leftmost one.  The 
whole expression will be highlighted.  If you do that on the left bracket after Pane in the above 
statement, you will see that {Automatic, 200} is inside the Pane command.  Try triple-clicking on the 
bracket after the Short command.

Now let’s get rid of the Short command (so we can see our whole string) and add some scrollbars 
to our pane.

Framed[Pane[originIntroduction, {Automatic, 200}, Scrollbars → True]]

This is useful, so we are going to turn it into a function that we can use anytime we need it. We 
define a function as shown below. The name of our function is viewData (best to start with a lower-
case letter so our user-defined functions don't get confused with built-in functions). Instead of 
making the function specific to the variable that we used to test it, we create a new variable called x. 
The x followed by an underscore in the definition is an example of a named pattern.

viewData[x_] :=
Framed[Pane[x, {Automatic, 200}, Scrollbars → True]]

Now we can use our new command to look at any source that might be too long to display without it.

viewData[originIntroduction]

Testing for matches
The MatchQ command tests to see whether a pattern is matched by an expression, returning True 
if so and False if not. It is very useful for testing and debugging patterns. Let’s use it to learn more 
about the Blank (_) command.

Blank matches a single expression. This might be a symbol, integer, rational number, string, list or 
other kind of expression.

MatchQ[a, _]

MatchQ[123, _]

MatchQ
1

2
, _

MatchQ["Beagle", _]

32     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



MatchQ[{a, b, c}, _]

If we want to specify what kind of element to match, we can put the Head after the underscore.

MatchQ[{a, b, c}, _List]

MatchQ[{a, b, c}, _Symbol]

MatchQ[a, _Symbol]

When we define a function, we usually use a named Blank to stand for each argument. In the 
function below, the symbol x could be assigned the value of any single list.

f[x_List] := Length[x]

f[{a, b, c}]

If we try to give this function something that is not a list, or more than one list, the pattern doesn’t 
match.

f[a]

f[{a, b, c}, {d, e}]

If we wanted a function definition that could match an arbitrary number of arguments, we could use 
a named BlankSequence (__) instead of a named Blank. Instead of measuring the length of a list, 
this function counts the number of arguments you give it.

g[x__List] := Length[{x}]

g[{a, b, c}]

g[{a, b, c}, {d, e}, {p, q, r}]

Since we are finished with this example, we can Clear the function definitions.

Clear[f, g]

Sorting and pure functions
The Sort command puts elements of a list into a canonical order. If the elements are integers they 
are sorted from least to greatest. If they are symbols, they are sorted into alphabetical order.

Sort[{3, 3, 6, 3, 4, 8, 2}]

Sort[{d, y, w, b, a, u}]

If you want the elements in a different order, you have to give Sort an ordering function. This is 
usually a pure function. If you want to sort numbers from greatest to least, the ordering function is

#1 > #2 &

and the command looks like this

Sort[{3, 3, 6, 3, 4, 8, 2}, #1 > #2 &]

The default order for strings is alphabetical. You can sort them by StringLength as shown in the 
second of these examples.

Sort[{"this", "could", "be", "a", "test", "of", "sorts"}]

Sort[{"this", "could", "be", "a", "test", "of", "sorts"},
StringLength[#1] < StringLength[#2] &]

If you are sorting nested lists, associations, or something else with internal structure, your ordering 
function can make use of Part. The following examples show how to sort a nested list based on (a) 
the first element of each sublist, (b) the second element, and (c) the second element from greatest 
to least.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     33



If you are sorting nested lists, associations, or something else with internal structure, your ordering 
function can make use of Part. The following examples show how to sort a nested list based on (a) 
the first element of each sublist, (b) the second element, and (c) the second element from greatest 
to least.

Sort[{{a, 23}, {f, 11}, {c, 9}, {w, 1}, {s, 2}, {b, 42}}]

Sort[{{a, 23}, {f, 11}, {c, 9}, {w, 1}, {s, 2}, {b, 42}}, #1〚2〛 < #2〚2〛 &]

Sort[{{a, 23}, {f, 11}, {c, 9}, {w, 1}, {s, 2}, {b, 42}}, #1〚2〛 > #2〚2〛 &]

Cleaning up the concordance (KWIC) code
At the point that we finished developing our concordance (keyword in context) code above, it looked 
like the following.

With[{w = WordCharacter .. ~~ Except[WordCharacter] ..},
  StringCases[origin20K, w ~~ w ~~ w ~~ "domestic" ~~ Except[WordCharacter] .. ~~ w 
~~ w ~~ w, IgnoreCase -> True]] // TableForm

We hardcoded the size of the window (three words to either side) and the keyword (‘domestic’) and 
we left the output more-or-less unformatted. This code will be more useful, however, if we allow the 
hardcoded values to vary and wrap everything up in the form of a function.

The function will have three parameters, one each for the text we are searching, the keyword and 
the window size. The first two parameters should be strings and the third should be an integer. The 
function should return nicely formatted output. This is what we have got so far 

kwic[text_String, keyword_String, win_Integer] :=
 Module[{...},
  ...
  Return[...]]

The Module command inside our function definition allows us to temporarily define symbols. We will 
use one symbol for the pattern that matches an individual word, one for our window (sequence of 
word patterns) and one for the results we want the function to return. We can just copy our word 
pattern code from above. Our function definition now looks like this

kwic[text_String, keyword_String, win_Integer] :=
  Module[{wordpattern, window, resultlist},
   wordpattern = WordCharacter .. ~~ Except[WordCharacter] ..;
   ...
   Return[resultlist]]

Whenever we have used two dots in a StringExpression, we have actually been using shorthand 
notation for the Repeated command. The two expressions below mean the same thing.

WordCharacter ..
Repeated[WordCharacter]

If we want to specify a pattern where something is repeated n times, we can use the following 
expression.

Repeated[pattern, {n}]

This makes it easy to specify the size of our window, as follows.

kwic[text_String, keyword_String, win_Integer] :=
 Module[{wordpattern, window, resultlist},
  wordpattern = WordCharacter .. ~~ Except[WordCharacter] ..;
  window = Repeated[wordpattern, {win}];
  ...
  Return[resultlist]]

At this point we can copy the StringCases code from above. Note that we replace the three copies 
of our old word pattern with a new one based on Repeated. Our function definition now looks like 
this:

34     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



At this point we can copy the StringCases code from above. Note that we replace the three copies 
of our old word pattern with a new one based on Repeated. Our function definition now looks like 
this:

kwic[text_String, keyword_String, win_Integer] :=
 Module[{wordpattern, window, resultlist},
  wordpattern = WordCharacter .. ~~ Except[WordCharacter] ..;
  window = Repeated[wordpattern, {win}];
  resultlist = StringCases[text, 
    window ~~ keyword ~~ Except[WordCharacter] .. ~~ window, IgnoreCase -> True];
  Return[resultlist]]

We want to add a little more code to format the results so they are easier to read. We break each of 
our result strings into a list of words using StringSplit, then use the TableForm and Style com-
mands to output the words in columns of medium-sized text. The formatted output is returned in a 
framed pane with scrollbars.

kwic[text_String, keyword_String, win_Integer] :=
Module[{wordpattern, window, resultlist, formatted},
wordpattern = WordCharacter .. ~~ Except[WordCharacter] ..;
window = Repeated[wordpattern, {win}];
resultlist = StringCases[text,

window ~~ keyword ~~ Except[WordCharacter] .. ~~ window, IgnoreCase → True];
formatted = Style[TableForm[StringSplit[resultlist]], Medium];
Return[Framed[Pane[formatted, {Full, Automatic}, Scrollbars → True]]]]

kwic[origin20K, "domestic", 3]

Here is another example of our function in action. Note that because the StringSplit command uses 
whitespace by default to separate words, the hyphens and dashes screw up our formatting a little bit.

kwic[origin20K, "species", 3]

A problem with overlapping windows
Beware of increasing the window size too much when using this function. If the words in the window 
to the right of the first instance of a keyword overlap with those in the window to the left of a second 
instance, StringCases will miss the second instance. If you increase the window size to 4, and do 
the search for “domestic”, the “domestic pigeons” instance will drop out because of this overlap, as 
illustrated below.

kwic[origin20K, "domestic", 4]

This is the passage that has the overlapping KWIC windows when the window size is four

StringTake[origin20K, {10390, 10497}]

The “one or” on the right edge of the first window overlaps with the “one or” on the left edge of the 
second window.

With[{t = TextWords[StringTake[origin20K, {10390, 10497}]]},
{t〚1 ;; 9〛, t〚8 ;; 16〛}]

Further Exploration

A function for finding one word near another
In the ‘Generalizing the Examples’ section above, we used a function that can find two words near 
one another in a text string. Here we work through the logic of solving that problem.

We start by using StringPosition to find locations of each word in the text string. It will return the 
starting and ending character positions of all matches in order from the beginning of the text to the 
end. We’ll use origin20K for our text string.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     35



We start by using StringPosition to find locations of each word in the text string. It will return the 
starting and ending character positions of all matches in order from the beginning of the text to the 
end. We’ll use origin20K for our text string.

StringPosition[origin20K, "geological" ~~ WordBoundary]

StringPosition[origin20K, "geographical" ~~ WordBoundary]

In both cases we only need to keep the starting character positions, so we use Part to pull them out.

StringPosition[origin20K, "geological" ~~ WordBoundary]〚All, 1〛

StringPosition[origin20K, "geographical" ~~ WordBoundary]〚All, 1〛

If we merge the two location lists together, we only need to see if adjacent words are within our 
specified distance, and we only need to check if the two words are different from one another. That 
is to say that we don’t care if one instance of ‘geological’ is closely followed by another, only if an 
instance of ‘geological’ is followed by one of ‘geographical’, or vice versa. So we pair each word with 
its locations before merging, like shown below. (The use of pure functions with the Map command 
was introduced in the ‘Programming with Mathematica’ section of Chapter 1).

Map[List["geological", #] &,
StringPosition[origin20K, "geological" ~~ WordBoundary]〚All, 1〛]

Map[List["geographical", #] &,
StringPosition[origin20K, "geographical" ~~ WordBoundary]〚All, 1〛]

Join the two lists together and Sort on the second member of each pair. (Sorting is explained in 
more detail in the ‘Programming with Mathematica’ section above.)

Sort[Join[Map[List["geological", #] &,
StringPosition[origin20K, "geological" ~~ WordBoundary]〚All, 1〛],

Map[List["geographical", #] &, StringPosition[origin20K,
"geographical" ~~ WordBoundary]〚All, 1〛]], #1〚2〛 < #2〚2〛 &]

The Partition command lets us group adjacent elements of the list into pairs to check.

Partition[{a, b, c, d}, 2, 1]

Partition[Sort[Join[Map[List["geological", #] &,
StringPosition[origin20K, "geological" ~~ WordBoundary]〚All, 1〛],

Map[List["geographical", #] &, StringPosition[origin20K,
"geographical" ~~ WordBoundary]〚All, 1〛]], #1〚2〛 < #2〚2〛 &], 2, 1]

Now we can use DeleteCases to get rid of any pairs where the two words are the same.

DeleteCases[
Partition[Sort[Join[Map[List["geological", #] &, StringPosition[origin20K,

"geological" ~~ WordBoundary]〚All, 1〛], Map[List["geographical", #] &,
StringPosition[origin20K, "geographical" ~~ WordBoundary]〚All, 1〛]],

#1〚2〛 < #2〚2〛 &], 2, 1], {{x_, _}, {x_, _}}]

We are finished now with the word labels, so we can get rid of them with a mix of Part and Span 
commands.

DeleteCases[
Partition[Sort[Join[Map[List["geological", #] &, StringPosition[origin20K,

"geological" ~~ WordBoundary]〚All, 1〛], Map[List["geographical", #] &,
StringPosition[origin20K, "geographical" ~~ WordBoundary]〚All, 1〛]],

#1〚2〛 < #2〚2〛 &], 2, 1], {{x_, _}, {x_, _}}]〚All, 1 ;; 2, 2〛

We want to Select any pair of positions that are within some distance (here we use 100 characters).

36     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Select[DeleteCases[
Partition[Sort[Join[Map[List["geological", #] &, StringPosition[origin20K,

"geological" ~~ WordBoundary]〚All, 1〛], Map[List["geographical", #] &,
StringPosition[origin20K, "geographical" ~~ WordBoundary]〚All, 1〛]],

#1〚2〛 < #2〚2〛 &], 2, 1], {{x_, _}, {x_, _}}]〚
All, 1 ;; 2, 2〛, (#〚2〛 - #〚1〛) < 100 &]

Finally, we can display the matching parts of the text by mapping the StringTake function across 
the character position pairs that are within the desired distance. We show 100 characters before the 
beginning of the first match and after the end of the second.

Map[StringTake[origin20K, {#〚1〛 - 100, #〚2〛 + 100}] &, {{3526, 3553}, {8420, 8512}}]

Now we can bundle everything up into a function. The inputs will be the text string we are searching, 
the two strings we are searching for, and the number of characters that we want to use as a win-
dow. The output will be a TabView display.

stringFindNear[txt_, str1_, str2_, within_] :=
TabView[Map[StringTake[txt, {#〚1〛 - 100, #〚2〛 + 100}] &,

Select[DeleteCases[Partition[Sort[Join[Map[List[str1, #] &, StringPosition[
txt, str1 ~~ WordBoundary]〚All, 1〛], Map[List[str2, #] &,

StringPosition[txt, str2 ~~ WordBoundary]〚All, 1〛]], #1〚2〛 < #2〚2〛 &],
2, 1], {{x_, _}, {x_, _}}]〚All, 1 ;; 2, 2〛, (#〚2〛 - #〚1〛) ≤ within &]]]

stringFindNear[origin20K, "geological", "geographical", 100]

Mathematica Commands to Review

◼ BE: Basic Examples, GE: Generalizing the Examples, PM: Programming with Mathematica, FE: 
Further Exploration

◼ Blank (BE)

◼ BlankNullSequence (BE)

◼ BlankSequence (GE)

◼ Cases (BE)

◼ Clear (GE)

◼ DeleteCases (FE)

◼ DigitCharacter (GE)

◼ ExampleData (BE)

◼ Except (BE)

◼ Flatten (BE)

◼ Framed (PM)

◼ Head (BE)

◼ Join (FE)

◼ Keys (BE)

◼ Length (BE)

◼ List (FE)

◼ Lookup (BE)

◼ Map (BE)

◼ MatchQ (PM)

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     37



◼ MemberQ (BE)

◼ Module (PM)

◼ Pane (PM)

◼ Part (BE)

◼ Partition (FE)

◼ PatternTest (BE)

◼ Repeated (BE)

◼ Rest (BE)

◼ Select (BE)

◼ Short (BE)

◼ Shortest (BE)

◼ Sort (FE)

◼ StringCases (BE)

◼ StringExpression (BE)

◼ StringJoin (FE)

◼ StringLength (BE)

◼ StringPosition (FE)

◼ StringRiffle (BE)

◼ StringSplit (PM)

◼ StringTake (BE)

◼ Style (PM)

◼ TableForm (BE)

◼ TabView (GE)

◼ TextSentences (BE)

◼ TextWords (BE)

◼ Union (BE)

◼ UpperCaseQ (BE)

◼ Whitespace (BE)

◼ With (BE)

◼ WordBoundary (BE)

◼ WordCharacter (BE)

◼ WordCounts (BE)

◼ WordData (BE)

◼ WordStem (BE)

Problems

Problem 2.1
Input: {g,a,g,a,d,a,d,a}
Output: {g,g,d,d}

38     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Cases[{g, a, g, a, d, a, d, a}, Except[a]]

Problem 2.2
Input: {{a,1},{b,1},{c,2},{d,2},{e,1}}
Output: {{a,1},{b,1},{e,1}}

Cases[{{a, 1}, {b, 1}, {c, 2}, {d, 2}, {e, 1}}, {_, 1}]

Problem 2.3
Input: {{a,1},{b,1},{c,2},{d,2},{e,1}}
Output: {a,b,e}

Cases[{{a, 1}, {b, 1}, {c, 2}, {d, 2}, {e, 1}}, {x_, 1} → x]

Cases[{{a, 1}, {b, 1}, {c, 2}, {d, 2}, {e, 1}}, {_, 1}]〚All, 1〛

Problem 2.4
Input: {{a,1},{b,1},{c,2},{d,2},{e,1}}
Output: {1,2,a,b,c,d,e}

Union[Flatten[{{a, 1}, {b, 1}, {c, 2}, {d, 2}, {e, 1}}]]

Problem 2.5
Input: "The QUICK brown fox jumped over the LAZY dog"
Output: {QUICK,LAZY}

Select[TextWords["The QUICK brown fox jumped over the LAZY dog"], UpperCaseQ]

Problem 2.6
Input: "The QUICK brown fox jumped over the LAZY dog"
Output: #the→2,quick→1,over→1,lazy→1,jumped→1,fox→1,dog→1,brown→1$

WordCounts["The QUICK brown fox jumped over the LAZY dog", IgnoreCase → True]

Problem 2.7
Input: "The QUICK brown fox jumped over the LAZY dog"
Output: #{the,quick}→1,{the,lazy}→1,{quick,brown}→1,{over,the}→1,{lazy,dog}→
1,{jumped,over}→1,{fox,jumped}→1,{brown,fox}→1$

WordCounts["The QUICK brown fox jumped over the LAZY dog", 2, IgnoreCase → True]

Problem 2.8
Input: {{a,b,c},{d,e,f},{g,h,i}}
Output: {{b,c},{e,f},{h,i}}

Map[Rest, {{a, b, c}, {d, e, f}, {g, h, i}}]

{{a, b, c}, {d, e, f}, {g, h, i}}〚All, 2 ;; 3〛

Problem 2.9
Input: "The QUICK brown fox jumped over the LAZY dog"
Output: {fox,dog}

StringCases["The QUICK brown fox jumped over the LAZY dog",
WordBoundary ~~ WordCharacter ~~ "o" ~~ WordCharacter ..]

Problem 2.10
Input: "The QUICK brown fox jumped over the LAZY dog"
Output: {The,QUI,bro,fox,jum,ove,the,LAZ,dog}

StringCases["The QUICK brown fox jumped over the LAZY dog",
WordBoundary ~~ Repeated[WordCharacter, {3}]]

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     39



Map[StringTake[#, 3] &,
TextWords["The QUICK brown fox jumped over the LAZY dog"]]

Problem 2.11
Input: "quick"
Output: {Noun,Adjective,Adverb,Interjection}

WordData["quick", "PartsOfSpeech"]

Problem 2.12
Input: "quick"
Output: {Agile,Warm,Prompt,Speedy,Fast,Ready}

Cases[WordData["quick"], {_, "Adjective", x_} → x]

Problem 2.13
Input: "The QUICK brown fox jumped over the LAZY dog"
Output: {quick,brown,fox,jumped,lazy,dog}

DeleteStopwords[
TextWords[ToLowerCase["The QUICK brown fox jumped over the LAZY dog"]]]

Problem 2.14
Input: {a,b,123,c,45,d,e,67}
Output: {123,45,67}

Cases[{a, b, 123, c, 45, d, e, 67}, _Integer]

Problem 2.15
Input: {a,b,123,c,45,d,e,67}
Output: {a,b,c,d,e}

Cases[{a, b, 123, c, 45, d, e, 67}, _Symbol]

Problem 2.16
Input: {1,2,3,4,5}
Output: {{1,2,3},{2,3,4},{3,4,5}}

Partition[{1, 2, 3, 4, 5}, 3, 1]

Problem 2.17
Input: {1,2,3,4,5}
Output: {{1},{2},{3},{4},{5}}

Partition[{1, 2, 3, 4, 5}, 1, 1]

Map[List, {1, 2, 3, 4, 5}]

Exercises

1. (Gendered language). Choose one of the sample texts and do an analysis of the author’s 
use of gendered language. One of the easiest ways to start is to look at the contexts in 
which he or she uses pronouns (like “he” or “she”). For example, do the same kinds of 
verbs follow both pronouns? Is the reader assumed to be masculine? You can use the 
LanguageData command to get a list of basic pronouns for a particular language as 
shown in the command below. You will probably also want to consider possessives such 
as “his” and “hers”.

LanguageData["English", "Pronouns"]

40     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



2. (Trigrams). Try analyzing the 3-grams in the Introduction to Origin of Species. What kinds 
of patterns become more evident with longer phrases? What tradeoffs do you encounter as 
you increase n in your n-gram analyses?

3. (Roll your own n-gram analysis). Prior to the introduction of the WordCounts command in 
2015, Mathematica programmers had to use different methods to extract and count n-
grams. Using StringSplit, Sort, Partition and Tally, write your own n-gram frequency 
code. Compare your results to those output by WordCounts.

4. (Visualizing workflow). In the ‘Further Exploration’ section of Chapter 1, there is a step-by-
step description of using LayeredGraphPlot to visualize your workflow. Create a similar 
image for the ‘Basic Examples’ section of Chapter 2. What are the advantages and 
disadvantages of including more or less detail in your network visualization?

ch03

Chapter 03: Who and What

Overview

In the first two chapters, we began to learn how to use the statistical analysis of text to identify 
important words and phrases in a document or corpus of documents. We also started working with 
commands that allow us to describe and match patterns: generalizations that apply to more than 
one word or phrase. And in the case of the WordData command we saw that Mathematica has 
access to a lot of information about the English language, although we only scratched the surface of 
what that command can do. In fact, one of the main advantages of using Mathematica for digital 
research is that it has direct, computational access to information about millions of entities. In this 
chapter and the next, we will explore some of this computable data and see how it allows us to 
rapidly prototype tools that can be customized to our research sources and questions.

N.B. Because sources of computable data are constantly being updated, the results that I obtained 
when I wrote the text could well be different from the ones that you get when you are using these 
commands. Keep that in mind if your results are a bit different from mine.

Basic Examples

Computable data about people
In exploring the meaning of a text, named entities (such as people, organizations, locations, dates 
and times) play a special role, and being able to automatically identify these entities allows you to 
link data from multiple sources. We begin with the problem of identifying people and retrieving 
information about them.

Mathematica has direct access to information about millions of entities via the WolframAlpha 
command. If we want to search by hand, we can type += in our Notebook, and then type our query 
into the text box. Let's do this for Darwin himself. (This command, and many others we use in this 
chapter, require Internet access).

Charles Darwin (person)

Mathematica responds by giving us an input box where we can either accept the default interpreta-
tion (which happens to be correct) or choose an alternate interpretation (if it is not). The formatting 
of the output shows us that “Charles Darwin” is an entity, a symbolic representation that is meaning-
fully attached to many other kinds of information. Looking at the input box, we can also see that this 
entity is of the type “Person”.

We can get the same functionality by using the WolframAlpha command and asking for the 
“WolframResult” format.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     41



We can get the same functionality by using the WolframAlpha command and asking for the 
“WolframResult” format.

WolframAlpha["Darwin", "WolframResult"]

Another way to retrieve an entity is to use an Interpreter. This family of commands generates 
entites of a desired type. Here is how we generate an entity corresponding to Darwin.

Interpreter["ComputedPerson"]["Charles Darwin"]

Once we discover that there is an entity corresponding to one of our words or phrases, we can ask 
what kind of entity it is with the EntityTypeName command.

EntityTypeName Charles Darwin (person) 

Once we have identified an entity, we can request other information, or Properties, of that entity. 
Here is how we retrieve Darwin’s birth and death dates. The formatting of the output shows that 
each of these commands is returning other kinds of entites (locations in this case).

PersonData[Interpreter["ComputedPerson"]["Charles Darwin"], "BirthPlace"]

PersonData[Interpreter["ComputedPerson"]["Charles Darwin"], "DeathPlace"]

Computable data is returned in a form that allows us to use it for computation. How far away from 
his birthplace did Darwin die?

GeoDistance Shrewsbury (city) , London (city) 

We can use the PersonData command with “Properties” to find out what kind of information is 
available for that person. Some of the categories of information probably won’t be useful in a case 
like this (e.g., Chinese zodiac sign) and some of it won’t apply at all (e.g., space missions, notable 
film direction credits). But some of the information that we can request will definitely be useful. 

PersonData[Interpreter["ComputedPerson"]["Charles Darwin"], "Properties"]

If we just have part of a name, we can retrieve a full name.

PersonData[Interpreter["ComputedPerson"]["Charles Darwin"], "FullName"]

The following command retrieves Darwin’s birth date. Note that the returned value is also an entity. 
In the next chapter we will make more use of entities representing dates and places.

PersonData[Interpreter["ComputedPerson"]["Darwin"], "BirthDate"]

We can request a picture of the person if it is available.

PersonData[Interpreter["ComputedPerson"]["Darwin"], "Image"]

And a very short statement of their importance.

PersonData[Interpreter["ComputedPerson"]["Darwin"], "NotableFacts"]

Other books he wrote.

PersonData[Interpreter["ComputedPerson"]["Darwin"], "NotableBooks"] // TableForm

Some of the information that we might be curious about may not be available from the PersonData 
command.

PersonData[Interpreter["ComputedPerson"]["Darwin"], "Weight"]

Storing information in an association
Each time that we request external information, it takes a while to contact the server and retrieve the 
results. So it is a good idea to store a local copy of any information that we retrieve, so that we don’t 
have to keep asking for it. There are a number of different ways that we might do this, all involving 
what are called data structures. Some examples of data structures in Mathematica that we have 
already seen are the string, list and association. We will be using an association for this task.

42     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Each time that we request external information, it takes a while to contact the server and retrieve the 
results. So it is a good idea to store a local copy of any information that we retrieve, so that we don’t 
have to keep asking for it. There are a number of different ways that we might do this, all involving 
what are called data structures. Some examples of data structures in Mathematica that we have 
already seen are the string, list and association. We will be using an association for this task.

A given person, like Darwin, might be associated with a lot of different kinds of information: birth 
date, birth place, death date, place of death, spouse, children, etc. It is straightforward to imagine 
keeping all of this information in an association. In fact, a version of the PersonData command 
allows us to create such an association in one step, as shown below.

darwinAssoc = PersonData[Interpreter["ComputedPerson"]["Darwin"],
{"Entity", "FullName", "Image", "BirthDate", "DeathDate", "NotableFacts"},
"PropertyAssociation"]

Our association consists of a collection of rules of the form key→value. We can request the value 
associated with a particular Key by using a notation similar to Part :

darwinAssoc〚Key[EntityProperty["Person", "Entity"]]〛

darwinAssoc〚Key[EntityProperty["Person", "FullName"]]〛

We are going to want to retrieve PersonData a number of times, so we create a function for it.

getWAPersonPropertyAssoc[person_] :=
PersonData[Interpreter["ComputedPerson"][person], {"Entity", "FullName",

"Image", "BirthDate", "DeathDate", "NotableFacts"}, "PropertyAssociation"]

Formatting retrieved information for display
Later in the chapter we will see that it is relatively easy to go through a text, automatically identify 
some of the people mentioned in it, and retrieve information about them. In a traditional research 
workflow, it was common to write notes on 3x5 inch index cards. We can lay out the information in 
our association as if it were written on such a card.

Column displays a list in a column.

Column[{a, b, c}]

Here we use Column to put some information in a column.

Column[{darwinAssoc〚Key[EntityProperty["Person", "FullName"]]〛,
darwinAssoc〚Key[EntityProperty["Person", "BirthDate"]]〛,
darwinAssoc〚Key[EntityProperty["Person", "DeathDate"]]〛}]

We use the DateString command to turn date entities into strings. The single at sign (@) is infix 
notation for Apply. It lets us apply one command to another without building up a lot of nested 
brackets.

Column[{darwinAssoc〚Key[EntityProperty["Person", "FullName"]]〛,
DateString@darwinAssoc〚Key[EntityProperty["Person", "BirthDate"]]〛,
DateString@darwinAssoc〚Key[EntityProperty["Person", "DeathDate"]]〛}]

The Style and Text commands change formatting.

Style[darwinAssoc〚Key[EntityProperty["Person", "FullName"]]〛, Bold]

Text@Style[darwinAssoc〚Key[EntityProperty["Person", "FullName"]]〛, Bold]

When we put them in our column of information it looks like this. We have joined birth and death 
dates into a long string on one line using the infix notation for StringJoin (<>), and then formatted 
the whole thing as Text.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     43



Column[
{Text@Style[darwinAssoc〚Key[EntityProperty["Person", "FullName"]]〛, Bold],
Text["b. " <> DateString@

darwinAssoc〚Key[EntityProperty["Person", "BirthDate"]]〛 <> ", d. " <>
DateString@darwinAssoc〚Key[EntityProperty["Person", "DeathDate"]]〛]}]

The notable facts are themselves a list of strings, so they go inside another Column command. We 
want the facts to be formatted in a smaller font (Style Medium), so we Map a formatting command 
across the list. The slash at-sign (/@) is infix shorthand for the Map command.

Column[Text[Style[#, Medium]] & /@
darwinAssoc〚Key[EntityProperty["Person", "NotableFacts"]]〛]

If we put all of our formatted information together, it now looks like this.

Column[
{Text@Style[darwinAssoc〚Key[EntityProperty["Person", "FullName"]]〛, Bold],
Text["b. " <> DateString@

darwinAssoc〚Key[EntityProperty["Person", "BirthDate"]]〛 <> ", d. " <>
DateString@darwinAssoc〚Key[EntityProperty["Person", "DeathDate"]]〛],

Column[Text[Style[#, Medium]] & /@
darwinAssoc〚Key[EntityProperty["Person", "NotableFacts"]]〛]}]

The Grid command displays a nested list as a grid.

Grid[{{a, b}, {c, d}}]

We can use Grid to put our picture beside the column of information. The Frame→All option draws 
boxes around each cell in the grid.

Grid[{{darwinAssoc〚Key[EntityProperty["Person", "Image"]]〛, Column[
{Text@Style[darwinAssoc〚Key[EntityProperty["Person", "FullName"]]〛, Bold],
Text["b. " <> DateString@

darwinAssoc〚Key[EntityProperty["Person", "BirthDate"]]〛 <> ", d. " <>
DateString@darwinAssoc〚Key[EntityProperty["Person", "DeathDate"]]〛],

Column[Text[Style[#, Medium]] & /@ darwinAssoc〚
Key[EntityProperty["Person", "NotableFacts"]]〛]}]}},

Frame →
All]

Now we use the ItemSize scaling option for Grid so that twenty-five percent of the width of the 
notebook goes to the image and sixty-five percent to the column of information. We use the Align-
ment option so that the picture is aligned to the center of its cell, the information is aligned to the left 
of its cell, and both picture and information are aligned to the tops of their respective cells.

Grid[{{darwinAssoc〚Key[EntityProperty["Person", "Image"]]〛, Column[
{Text@Style[darwinAssoc〚Key[EntityProperty["Person", "FullName"]]〛, Bold],
Text["b. " <> DateString@

darwinAssoc〚Key[EntityProperty["Person", "BirthDate"]]〛 <> ", d. " <>
DateString@darwinAssoc〚Key[EntityProperty["Person", "DeathDate"]]〛],

Column[Text[Style[#, Medium]] & /@ darwinAssoc〚
Key[EntityProperty["Person", "NotableFacts"]]〛]}]}},

Frame → All, ItemSize → {{Scaled[.25], Scaled[.65]}},
Alignment → {{Center, Left}, {Top, Top}}]

We can wrap this up into a little function.

44     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



formatWAPersonData[assoc_] :=
Grid[{{assoc〚Key[EntityProperty["Person", "Image"]]〛,

Column[{Text@Style[assoc〚Key[EntityProperty["Person", "FullName"]]〛, Bold],
Text["b. " <> DateString@

assoc〚Key[EntityProperty["Person", "BirthDate"]]〛 <> ", d. " <>
DateString@assoc〚Key[EntityProperty["Person", "DeathDate"]]〛],

Column[Text[Style[#, Medium]] & /@
assoc〚Key[EntityProperty["Person", "NotableFacts"]]〛]}]}},

Frame → All, ItemSize → {{Scaled[.25], Scaled[.65]}},
Alignment → {{Center, Left}, {Top, Top}}]

formatWAPersonData[darwinAssoc]

An association of associations
Since we will be automatically retrieving information for people and other named entities mentioned 
in a text, we don’t want to have a separate data structure for each entity. We actually need to create 
a nested association, an association of associations. For the keys at the outside level, we are going 
to use a string that denotes the entity. For people, we will use the string Lastname, Firstname. Each 
of those keys will be linked to an association that keeps track of the information for that person.

<|"Darwin, Charles" ->

   EntityProperty[Person, Entity] → Charles Darwin , ..., EntityProperty[Person, 

BirthDate] -> "Sun 12 Feb 1809", ...|>,
  "Lyell, Charles" ->

   EntityProperty[Person, Entity] → Charles Lyell , ..., EntityProperty[Person, 
BirthDate] -> "Tue 14 Nov 1797", ...|>,
  ...
 |>

Let’s start building our association by creating an entry for Darwin.

darwinPeopleAssoc =
Association[{"Darwin, Charles" → getWAPersonPropertyAssoc["Charles Darwin"]}]

Next we can add an entry for Charles Lyell, who is mentioned a number of times in Origin.

textSearch[origin, "Charles Lyell"]

First we make sure that Wolfram Alpha has information about Lyell.

Interpreter["ComputedPerson"]["Charles Lyell"]

Then we add him to our association of associations with the AssociateTo command, which adds a 
rule to an existing association.

AssociateTo[darwinPeopleAssoc,
"Lyell, Charles" → getWAPersonPropertyAssoc["Charles Lyell"]];

We can view the formatted data for Charles Lyell with the following command.

formatWAPersonData[darwinPeopleAssoc〚"Lyell, Charles"〛]

Another person mentioned in Origin is George Bentham. Let’s add him to darwinPeopleAssoc, too.

textSearch[origin, "Bentham"]

Interpreter["ComputedPerson"]["George Bentham"]

AssociateTo[darwinPeopleAssoc,
"Bentham, George" → getWAPersonPropertyAssoc["George Bentham"]];

formatWAPersonData[darwinPeopleAssoc〚"Bentham, George"〛]

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     45



Who’s Who: A stack of cards 
If we imagine the formatted display of information as something akin to a traditional file card, then 
we will want to have some way of flipping through them. The command that we are going to use for 
this is called MenuView. It is similar to TabView, but instead of clicking buttons to change panes, 
we change them with a pull-down menu. 

Let’s begin with the Table command, which makes a structured list. Here we make a list with four 
elements. Each is a Rule which connects a number to the string “something”.

Table[i → "something", {i, 3}]

If we modify the command a little bit, we can get it to create a list of rules where the left hand side of 
each is a person in our association of associations.

Keys[darwinPeopleAssoc]

Keys[darwinPeopleAssoc]〚2〛

Table[Keys[darwinPeopleAssoc]〚i〛 → "something", {i, 3}]

Let’s sort the list so it is alphabetical by last name.

Sort[Table[Keys[darwinPeopleAssoc]〚i〛 → "something", {i, 3}]]

The number 3 here is just the number of elements in our list of keys. We can use Length to get that 
information. Then when we add more people, our command will still work. When we wrap the output 
in the MenuView command, we get our basic interface. The final display has to fit nicely in the 
notebook, so we use the ImageSize → Automatic property for MenuView.

MenuView[Sort[Table[Keys[darwinPeopleAssoc]〚i〛 → "something",
{i, Length[Keys[darwinPeopleAssoc]]}]], ImageSize → Automatic]

Now that is working, we replace “something” with the nicely formatted display of information about 
the person, then put the whole thing in a function.

whosWho[assoc_] :=
MenuView[
Sort[Table[Keys[assoc]〚i〛 → formatWAPersonData[assoc〚Keys[assoc]〚i〛〛],

{i, Length[Keys[assoc]]}]], ImageSize → Automatic]

whosWho[darwinPeopleAssoc]

Linking people to passages
Let’s make one more refinement to the idea of automatically generating a Who’s Who of people 
mentioned in a text. It would be nice to include a browser that shows us passages in the text where 
the person in question was mentioned. We do this by adapting our textSearch code from Chapter 2. 
Instead of using the TabView command, however, we are going to use a command called 
SlideView, which lets us navigate through panes as if we were clicking through a slide show. We 
want the pane to take up the same amount of space as our formatted display (which was 90% of the 
notebook width) so we specify that with the ImageSize→Scaled[0.9] property.

SlideView[Map[StringTake[origin, {#〚1〛 - 100, #〚2〛 + 100}] &,
StringPosition[origin, "Bentham" ~~ WordBoundary]], ImageSize → Scaled[0.9]]

Setting a few other properties allows us to move the controls to the bottom of the interface, to add 
some indication of how many slides there are, and to show which slide is currently being displayed. 
In addition, we format as Text.

46     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Text@SlideView[Map[StringTake[origin, {#〚1〛 - 100, #〚2〛 + 100}] &,
StringPosition[origin, "Bentham" ~~ WordBoundary]], ImageSize → Scaled[0.9],

ControlPlacement → Bottom, AppearanceElements → {"FirstSlide",
"PreviousSlide", "NextSlide", "LastSlide", "SlideNumber", "SlideTotal"}]

We can’t be sure that there will be a match, so we want our SlideView to do something graceful if 
not. Here is how it behaves without any error checking.

Text@SlideView[Map[StringTake[origin, {#〚1〛 - 100, #〚2〛 + 100}] &,
StringPosition[origin, "Darwin" ~~ WordBoundary]], ImageSize → Scaled[0.9],

ControlPlacement → Bottom, AppearanceElements → {"FirstSlide",
"PreviousSlide", "NextSlide", "LastSlide", "SlideNumber", "SlideTotal"}]

So we add a With command that tries to do the matching first, and an If command that displays an 
error message if the text search returns no matches. We also change the size from 100 to 200 
characters on either side of the match.

Text@SlideView[With[{srch = Map[StringTake[origin, {#〚1〛 - 200, #〚2〛 + 200}] &,
StringPosition[origin, "Darwin" ~~ WordBoundary]]},

If[srch ≠ {}, srch, {Style["No match found", Italic]}]],
ImageSize → Scaled[0.9], ControlPlacement → Bottom,
AppearanceElements → {"FirstSlide", "PreviousSlide",

"NextSlide", "LastSlide", "SlideNumber", "SlideTotal"}]

The last thing we need to do is get the search term. Recall that our keys are listed as “Lastname, 
Firstname”. If we use StringSplit, we can pull out the first word, like this:

Keys[darwinPeopleAssoc]〚3〛

StringSplit[Keys[darwinPeopleAssoc]〚3〛, Except[WordCharacter]]〚1〛

Here is a new version of the whosWho function that shows text matches for each person.

whosWho2[assoc_, txt_] :=
MenuView[Sort[Table[Keys[assoc]〚i〛 → Column[{

formatWAPersonData[assoc〚Keys[assoc]〚i〛〛],
Text@
SlideView[With[{srch = Map[StringTake[txt, {#〚1〛 - 200, #〚2〛 + 200}] &,

StringPosition[txt, StringSplit[Keys[assoc]〚i〛,
Except[WordCharacter]]〚1〛 ~~ WordBoundary]]},

If[srch ≠ {}, srch, {Style["No match found", Italic]}]],
ImageSize → Scaled[0.9], ControlPlacement → Bottom,
AppearanceElements → {"FirstSlide", "PreviousSlide",

"NextSlide", "LastSlide", "SlideNumber", "SlideTotal"}]}],
{i, Length[Keys[assoc]]}]], ImageSize → Automatic]

whosWho2[darwinPeopleAssoc, origin]

Summary
The deep integration of computable data into Mathematica makes it possible to resolve named 
entities of many different kinds and automatically retrieve information about them. This, in turn, 
means that you can write computational tools that do some kinds of simple research tasks that you 
(or maybe a research assistant) used to do by hand. (Who was George Bentham? Was his Hand-
book of British Flora published before Origin? Where in the text of Origin does Darwin mention him?)

So far we have focused on people, but in the rest of this chapter and in the next we will also see 
examples of named institutions, books, places, dates, ships, and other entities. Because each 
Wolfram Alpha or Wikipedia query takes a significant amount of time, we cached data that we 
retrieved in an association, so that future requests for it would be much faster.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     47



Generalizing the Examples

Identifying probable names
Anything that we can do once or twice, we can do over and over. In Chapter 2 we developed meth-
ods for finding capitalized words that were not at the beginnings of sentences. Now we will pull out 
all of the capitalized words from Origin of Species, try to figure out which ones are probably names, 
see which of those we can identify, and then retrieve computable information for each.

capitalizedWords[textstr_] :=
Union[Select[

Flatten[Map[Rest, Map[TextWords, TextSentences[textstr]]]], capitalizedQ]]

originCapWords = capitalizedWords[origin];

viewData[originCapWords]

Looking through these capitalized words, we see some that we know (or suspect) are people’s 
names, and others that we know (or suspect) are not. We can start by removing any word from the 
list if it also appears in the text in lowercase. This should get rid of things like ‘absence’ and 
‘abstract’. (It may also get rid of names like “Little”, “Brown”, “Gray”, “Smith”, “Banks”, “Burns” and 
so on. It is usually a good idea to study your sources carefully before and after each operation, to 
make sure you aren’t losing critical information.)

This is a list of each of the words in the whole book.

originTerms = Union[TextWords[origin]];

Each word in our list of capitalized words is in originTerms.

MemberQ[originTerms, "Abstract"]

We can test to see if it also appears in the text in lowercase like this.

MemberQ[originTerms, ToLowerCase["abstract"]]

Here are all the words we will remove if we pull out ones that appear both capitalized and in lower-
case. We look through the list to make sure we’re not getting rid of any probable names. (There are 
a few, like Brown and Gray, but we won’t worry about this right now).

viewData[Select[originCapWords, MemberQ[originTerms, ToLowerCase[#]] &]]

We will use the Complement command to find the ones that remain. This list is much shorter but 
still contains many words that are not proper names.

Complement[{a, b, c, d, e}, {a, b}]

viewData[Complement[originCapWords,
Select[originCapWords, MemberQ[originTerms, ToLowerCase[#]] &]]]

We will use the WordData command to try to narrow down the list. It recognizes some capitalized 
words as people’s names.

WordData["Agassiz"]

If we request the “BroaderTerms” property, it will give us a career description. The first time you use 
this functionality, Mathematica contacts Wolfram servers to download additional information. Unlike 
the WolframAlpha or WikipediaSearch commands, however, subsequent calls are quite fast.

WordData["Agassiz", "BroaderTerms"]

And if we ask for “BroaderTerms” for those terms, we eventually hit a description that includes the 
word “person”.

48     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



WordData["naturalist", "BroaderTerms"]

WordData["biologist", "BroaderTerms"]

WordData["scientist", "BroaderTerms"]

Some of the words that we are trying to filter out of this list are both nouns that refer to people and 
adjectives (e.g., ‘the American’, ‘American scientist’). A proper name is a noun but not an adjective. 
Let’s create small functions that checks to see if a word is a noun or an adjective.

nounQ[str_] :=
Cases[WordData[str], {_, "Noun", ___}] ≠ {}

nounQ["scientist"]

nounQ["scientific"]

adjectiveQ[str_] :=
Cases[WordData[str], {_, "Adjective", ___}] ≠ {}

adjectiveQ["scientist"]

adjectiveQ["scientific"]

The function below will start with a word that is a noun and not an adjective, and follow broader 
terms for three jumps to see if it hits “person”. The details of how it works are explained in the 
‘Programming with Mathematica’ section below.

personTermQ[str_] :=
If[nounQ[str] && Not[adjectiveQ[str]], MemberQ[

Union[Flatten[NestList[Flatten[WordData[#, "BroaderTerms", "List"] & /@ #] &,
{str}, 3]]], "person"], False]

personTermQ["scientist"]

personTermQ["biologist"]

personTermQ["naturalist"]

personTermQ["Agassiz"]

Now that we have this function, let’s test each of the capitalized words with it, and keep the ones 
that seem to refer to people. It definitely won’t be perfect, because we will lose any capitalized 
surnames that don’t appear in the WordData dictionary. And it won’t manage to get rid of some of 
the place names or other noise.

originCapWordsPerson =
Select[Complement[originCapWords, Union[CharacterRange["A", "Z"], Select[

originCapWords, MemberQ[originTerms, ToLowerCase[#]] &]]], personTermQ];

originCapWordsPerson

This list is short enough that we can test each entry with WolframAlpha and return any entities are 
associated with a person.

getWAPerson[str_] :=
Module[{entity},
entity = WolframAlpha[str, "WolframResult"];
If[EntityTypeName[entity] ⩵ "Person", Return[entity]]]

getWAPerson["Agassiz"]

getWAPerson["America"]

Now we can Map this function across the list of capitalized words we want to test, and collect any 
matching person entites. (While I was revising this text, the WolframAlpha server returned a number 
of unrelated warning messages. By wrapping the Cases command in Quiet, I am telling Mathemat-
ica to suppress warnings just for this example.)

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     49



Now we can Map this function across the list of capitalized words we want to test, and collect any 
matching person entites. (While I was revising this text, the WolframAlpha server returned a number 
of unrelated warning messages. By wrapping the Cases command in Quiet, I am telling Mathemat-
ica to suppress warnings just for this example.)

originCapWordsPersonEntities =
Quiet[Cases[Map[getWAPerson, originCapWordsPerson], _Entity]]

The wrong Wallace
When we look through the list above, we can see that we’ve got the wrong “Wallace”. (Joke about 
the wrong trousers left as an exercise for the reader). We’ve also obviously got the wrong King and, 
not so obviously, the wrong Bentham.

In a case like this, we might try to make use of WordData and/or WikipediaSearch to try to find the 
correct entities. The former is faster than the latter, so we should always start with it.

WordData["Wallace", "Definitions"]

WikipediaSearch["Content" → "Wallace naturalist 1823 1913", "MaxItems" → 3]

We make sure that Wolfram Alpha has an identity for the correct Wallace.

Interpreter["ComputedPerson"]["Alfred Russel Wallace"]

Now we can use the ReplacePart command to replace the wrong Wallace with the correct one.

originCapWordsPersonEntities = ReplacePart[originCapWordsPersonEntities,
-1 -> Interpreter["ComputedPerson"]["Alfred Russel Wallace"]]

Next we try to figure out which “King” Darwin was referring to.

textSearch[origin, "King"]

So we can safely delete MLK from our list of person entities.

originCapWordsPersonEntities = Delete[originCapWordsPersonEntities, 4]

Finally we can delete this Bentham, too. We already added the correct Bentham, George, above.

originCapWordsPersonEntities = Delete[originCapWordsPersonEntities, 2]

Let’s add information about these six people to our association of associations and then rerun the 
whosWho2 function.

AssociateTo[darwinPeopleAssoc,
"Agassiz, Louis" → getWAPersonPropertyAssoc["Louis Agassiz"]];

AssociateTo[darwinPeopleAssoc,
"Cuvier, Georges" → getWAPersonPropertyAssoc["Georges Cuvier"]];

AssociateTo[darwinPeopleAssoc, "Lamarck, Jean-Baptiste" →
getWAPersonPropertyAssoc["Jean-Baptiste Lamarck"]];

AssociateTo[darwinPeopleAssoc,
"Magellan, Ferdinand" → getWAPersonPropertyAssoc["Ferdinand Magellan"]];

AssociateTo[darwinPeopleAssoc,
"Pliny the Elder" → getWAPersonPropertyAssoc["Pliny the Elder"]];

AssociateTo[darwinPeopleAssoc, "Wallace, Alfred Russel" →
getWAPersonPropertyAssoc["Alfred Russel Wallace"]];

whosWho2[darwinPeopleAssoc, origin]

Working with capitalized bigrams
In Chapter 2 we also developed methods for finding capitalized bigrams, and some of these will be 
names that we missed. Following a similar process to the one we used for capitalized words, we will 
see if we can find any person entities among the capitalized bigrams.

50     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



In Chapter 2 we also developed methods for finding capitalized bigrams, and some of these will be 
names that we missed. Following a similar process to the one we used for capitalized words, we will 
see if we can find any person entities among the capitalized bigrams.

capitalizedBigrams[txtstr_] :=
Cases[Keys[WordCounts[

StringRiffle[Flatten[Map[Rest, Map[TextWords, TextSentences[txtstr]]]]],
2]], {_?capitalizedQ, _?capitalizedQ}]

originCapBigrams = capitalizedBigrams[origin];

viewData[originCapBigrams]

Looking through these capitalized bigrams, we see some that we know (or suspect) are people’s 
names, and others that we know (or suspect) are not. We can start by removing any bigram from 
the list if both words also appear in the text in lowercase. This should get rid of things like {THE, 
SAME} and {Geological, Record}.

Here is how we test both words at the same time. The double ampersand (&&) is infix notation for 
And.

MemberQ[originTerms, ToLowerCase["Geological"]] &&
MemberQ[originTerms, ToLowerCase["Record"]]

Here are all the bigrams that we would remove if we pulled out the ones that appear both capitalized 
and in lowercase. We look through the list to make sure we’re not getting rid of any probable names.

viewData[Select[originCapBigrams, MemberQ[originTerms, ToLowerCase[#〚1〛]] &&
MemberQ[originTerms, ToLowerCase[#〚2〛]] &]]

As we can see, none of them are names. Again we will use the Complement command to find the 
ones that remain. This list is much shorter but still contains a lot of bigrams that don’t seem to refer 
to people.

viewData[Complement[originCapBigrams,
Select[originCapBigrams, MemberQ[originTerms, ToLowerCase[#〚1〛]] &&

MemberQ[originTerms, ToLowerCase[#〚2〛]] &]]]

Part of the trick to cleaning up a list like this is to remove entities that you can identify as something 
else. Most of the nouns that appear in WordData, for example, are actually places, as you can see 
in the Select statement below.

Select[Complement[originCapBigrams,
Select[originCapBigrams, MemberQ[originTerms, ToLowerCase[#〚1〛]] &&

MemberQ[originTerms, ToLowerCase[#〚2〛]] &]], nounQ[StringRiffle[#]] &]

WordData["Asa Gray", "Definitions"]

WordData["Robert Brown", "Definitions"]

Other names are more easily retrieved by using the Cases command to pull out titles.

Cases[Complement[originCapBigrams,
Select[originCapBigrams, MemberQ[originTerms, ToLowerCase[#〚1〛]] &&

MemberQ[originTerms, ToLowerCase[#〚2〛]] &]], {"Colonel" "Professor", _}]

WikipediaSearch["Content" → "Dana Darwin Origin", "MaxItems" → 2]

WikipediaSearch["Content" → "Huxley Darwin Origin", "MaxItems" → 2]

If we wished, we could continue to track down named person entities from the text and add them to 
our association of associations, but we will leave it for now. The amount of work that you do in a 
situation like this depends on your goals. If you are just trying to get the gist of a source quickly, you 
can leave things messy. If you are writing a dissertation or book about Darwin or the history of 
natural history, you want to get every detail right. And that, of course, would also involve a critical 
reading of the information returned by Wolfram Alpha, Wikipedia, and other sources of computable 
data.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     51



If we wished, we could continue to track down named person entities from the text and add them to 
our association of associations, but we will leave it for now. The amount of work that you do in a 
situation like this depends on your goals. If you are just trying to get the gist of a source quickly, you 
can leave things messy. If you are writing a dissertation or book about Darwin or the history of 
natural history, you want to get every detail right. And that, of course, would also involve a critical 
reading of the information returned by Wolfram Alpha, Wikipedia, and other sources of computable 
data.

The author of Vestiges
Sometimes a person isn’t mentioned by their full name but is referred to by another phrase instead. 
To human readers the meaning may be obvious in context. For example, in the passage shown 
below we can safely conclude that “Sir Charles Lyell” and “Sir C. Lyell” refer to the same person. 
Getting the computer to recognize that fact is more difficult.

stringFindNear[origin, "C", "Charles", 200]

In Origin, Joseph Dalton Hooker is always referred to as “Dr. Hooker”. In this case—as with “Mr. 
Wallace”—we need to consult evidence outside the text (e.g., Wikipedia) to disambiguate the 
referent.

textSearch[origin, "Hooker"]

WikipediaSearch["Joseph Dalton Hooker"]

Sometimes, however, people are referred to by a phrase that doesn’t contain a name at all, and the 
Introduction to Origin contains one (in)famous example of this. Darwin refers to “the author of the 
‘Vestiges of Creation’” because at the time Origin was published (1859), the person who wrote 
Vestiges wasn’t known. Published anonymously in 1844, the book was a sensation and the list of 
suspected authors was quite long. In fact Darwin himself was among them (Secord 2003).

stringFindNear[origin, "author", "Vestiges", 200]

We can use the WikipediaSearch and PersonData commands to quickly resolve who this phrase 
refers to.

WikipediaSearch["vestiges of creation"]

PersonData Robert Chambers (person) , "FullName"

PersonData Robert Chambers (person) , "Image"

PersonData Robert Chambers (person) , "BirthDate"

We will return to Vestiges of the Natural History of Creation in a future chapter.

Other kinds of named entity
In the next chapter we will consider events, times and places, but here are a few other examples of 
named entities that appear in Origin. In many cases we can get further information with calls to 
WolframAlpha or WikipediaSearch, just as we did in the case of named persons.

Institutions:

textSearch[origin, "Linnean Society"]

WikipediaSearch["Linnean Society of London"]

Books:

WikipediaSearch["Principles of Geology"]

EntityValue The Voyage of the Beagle (book) , "Properties"

EntityValue The Voyage of the Beagle (book) , "Author"

52     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



EntityValue The Voyage of the Beagle (book) , "OriginalTitle"

Vessels:

WikipediaSearch["H.M.S. Beagle"]

Taxonomic categories:

textSearch[origin, "Columbidae"]

WikipediaSearch["Columbidae"]

pigeon (species specification)

EntityValue pigeon (species specification) ,

{"Kingdom", "Phylum", "Class", "Order", "Family"}

Programming with Mathematica

Nondestructive versus destructive operations
In Mathematica, operations tend to be nondestructive by default. Suppose you assign a list to a 
symbol.

testList = {a, b, c, d, e}

If you apply a command like Reverse, the output will be a reordering of the list.

Reverse[testList]

But the original list has not changed. That is what is meant by a nondestructive operation.

testList

If you want the original list to change, you have to assign a new value to the symbol.

testList = Reverse[testList]

Now our original list has been replaced with the reversed version. That is a destructive operation.

testList

We use the Clear command to clear the assignment.

Clear[testList]

In the case of the association that we created to keep track of information retrieved from Wolfram 
Alpha, we need to make destructive changes. The AssociateTo command modifies associations 
whenever we use it.

When we used the Delete or ReplacePart commands to destructively modify lists, we assigned the 
new list to the original symbol, as shown below

originCapWordsPersonEntities = Delete[originCapWordsPersonEntities, 4]

The benefits of reading the Mathematica documentation
Often when you are working on a problem you will find that one of the examples in the Mathematica 
documentation comes close to doing what you need. The personTermQ function was adapted from 
some code in the help file for WordData.

personTermQ[str_] :=
 If[nounQ[str] && Not[adjectiveQ[str]], 
   MemberQ[
     Union[
       Flatten[NestList[Flatten[WordData[#, "BroaderTerms", "List"] & /@ #] &, 
         {str}, 3]]], "person"], False]

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     53



personTermQ[str_] :=
 If[nounQ[str] && Not[adjectiveQ[str]], 
   MemberQ[
     Union[
       Flatten[NestList[Flatten[WordData[#, "BroaderTerms", "List"] & /@ #] &, 
         {str}, 3]]], "person"], False]

personTermQ[str_] :=
If[nounQ[str] && Not[adjectiveQ[str]], MemberQ[

Union[Flatten[NestList[Flatten[WordData[#, "BroaderTerms", "List"] & /@ #] &,
{str}, 3]]], "person"], False]

The key to understanding this code is the NestList command, which applies a function to an expres-
sion a number of times, collecting the output in a list as it goes. To demonstrate, recall the three-
Copies function we introduced in Chapter 1, which makes three copies of something.

threeCopies[x_] := {x, x, x}

threeCopies[a]

If you use NestList with this function and the symbol a twice, you get the following result.

NestList[threeCopies, a, 2]

The first item in the list is just the symbol a. It is the result of not applying the function at all. The 
second item in the list is a list with three copies of the symbol. It is the result of applying the function 
once. The third item in the list is a list of three copies of the list with three copies of the symbol. If we 
use Column to display the output of NestList it is a bit easier to see how it works.

NestList[threeCopies, a, 2] // Column

Here is what happens if we do it three times. Here we use the Text command to fit the fourth item in 
the list on one line. At each step, the thing that is being copied three times is the line above it.

NestList[threeCopies, a, 3] // Column // Text

Now let’s try this with the WordData command. Here is what happens when we call the function 
once.

Union[Flatten[WordData["naturalist", "BroaderTerms", "List"]]]

This is the same thing, written as a pure function mapped across a list of terms. Our initial list just 
contains one term.

UnionFlatten[WordData[#, "BroaderTerms", "List"]] & /@ {"naturalist"}

Now if we use NestList zero times we just have the original term. 

Union@Flatten[NestList[
Flatten[WordData[#, "BroaderTerms", "List"] & /@ #] &, {"naturalist"}, 0]]

If we use it once, we have a list with the original term and the broader terms.

Union@Flatten[NestList[
Flatten[WordData[#, "BroaderTerms", "List"] & /@ #] &, {"naturalist"}, 1]]

If we use it twice, we get the broader terms of the broader terms added to our list.

Union@Flatten[NestList[
Flatten[WordData[#, "BroaderTerms", "List"] & /@ #] &, {"naturalist"}, 2]]

If we use it three times, we have travelled quite a distance from the original term. If this list contains 
the word “person” (it does), then personTermQ returns True.

Union@Flatten[NestList[
Flatten[WordData[#, "BroaderTerms", "List"] & /@ #] &, {"naturalist"}, 3]]

Here is an example of a noun that doesn’t include “person” among its broader terms, or the broader 
terms of those.

54     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Here is an example of a noun that doesn’t include “person” among its broader terms, or the broader 
terms of those.

Union@Flatten[
NestList[Flatten[WordData[#, "BroaderTerms", "List"] & /@ #] &, {"tapir"}, 3]]

References and Further Reading

◼ Secord, James A. Victorian Sensation: The Extraordinary Publication, Reception, and Secret 
Authorship of Vestiges of the Natural History of Creation. Chicago: University of Chicago Press, 
2003.

Mathematica Commands to Review

◼ BE: Basic Examples, GE: Generalizing the Examples, PM: Programming with Mathematica, FE: 
Further Exploration

◼ And (GE)

◼ Apply (BE)

◼ AssociateTo (BE)

◼ Column (BE)

◼ Complement (GE)

◼ DateString (BE)

◼ Entity (GE)

◼ EntityTypeName (BE)

◼ EntityValue (GE)

◼ GeoDistance (BE)

◼ Grid (BE)

◼ If (BE)

◼ Interpreter (BE)

◼ MenuView (BE)

◼ NestList (PM)

◼ PersonData (BE)

◼ ReplacePart (GE)

◼ SlideView (BE)

◼ TabView (BE)

◼ Text (BE)

◼ WikipediaSearch (GE)

◼ With (BE)

◼ WolframAlpha (BE)

Exercises

1. (Modifying whosWho). Try writing a version of the whosWho function that displays a KWIC 
listing rather than the text search one.

Chapter 04: When and Where

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     55



ch04

Chapter 04: When and Where

Overview

In the last chapter, we saw that we can use WolframAlpha and related commands like PersonData 
and EntityValue to associate strings in our text (like “Charles Lyell”, “Voyage of the Beagle” and 
“South America”) with entities (like Charles Lyell , The Voyage of the Beagle , and 

South America ). Having access to entities opens up a world of meaning, because we can 

retrieve properties associated with each entity, and use those both for computation and for further 
querying. In this chapter, we continue our exploration of entities, focusing now on times and places.

Basic Examples

Historical periods and events
One of the most basic ways to contextualize a research project is to situate it with respect to time 
and place. Let’s begin with time. Mathematica has access to entities that represent both broad 
historical periods and particular events. We can find out how many historical periods have associ-
ated entites with the following command.

EntityValue["HistoricalPeriod", "EntityCount"]

Each historical period entity can be queried for the following properties (although there is no guaran-
tee that there will always be associated data). 

EntityValue["HistoricalPeriod", "Properties"]

Origin of Species was a product of the Victorian era. We check to see that there is an entity for that, 
and then request some of its associated properties.

Interpreter["HistoricalPeriod"]["Victorian era"]

EntityValue[Interpreter["HistoricalPeriod"]["Victorian era"], "StartDate"]

EntityValue[Interpreter["HistoricalPeriod"]["Victorian era"], "EndDate"]

EntityValue[Interpreter["HistoricalPeriod"]["Victorian era"], "PeopleInvolved"]

If we are not sure how the Victorian era fits in with other historical periods, we can try retrieving 
entities for some other periods. We know Darwin was a scientist (that word began its rise to promi-
nence after Origin was published), an explorer, a ‘Renaissance’ man, etc. To graphically display 
historical periods, we can use TimelinePlot with a list of elements. If you hover over the bubbles 
with your mouse, start and end dates are shown. These are entities, too.

TimelinePlot[{Interpreter["HistoricalPeriod"]["age of exploration"],
Interpreter["HistoricalPeriod"]["renaissance"],
Interpreter["HistoricalPeriod"]["scientific revolution"],
Interpreter["HistoricalPeriod"]["age of enlightenment"],
Interpreter["HistoricalPeriod"]["industrial revolution"],
Interpreter["HistoricalPeriod"]["second industrial revolution"],
Interpreter["HistoricalPeriod"]["victorian era"]}]

Historical events occur on a much shorter time frame than periods, and Mathematica has access to 
entities representing far more of them. Each historical event entity has a number of associated 
properties.

56     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Historical events occur on a much shorter time frame than periods, and Mathematica has access to 
entities representing far more of them. Each historical event entity has a number of associated 
properties.

EntityValue["HistoricalEvent", "EntityCount"]

EntityValue["HistoricalEvent", "Properties"]

In order to figure out which of these event entities might provide context for Origin of Species and 
Darwin’s other works, we will download the entity, name and start date for each of them in the form 
of an association. In this case, the entity is the key, and the associated value is a list containing the 
name and start date. (This takes a little while).

histevents = EntityValue[EntityValue["HistoricalEvent", "Entities"],
{"Name", "StartDate"}, "EntityAssociation"];

Length[histevents]

Head[histevents]

Next we can use a Select command to pull out events that have to do with Darwin and plot them on 
a timeline. We limit our search to things that happened before his death in 1882. The DateList 
command allows us to extract the year from a date entity.

DateList Tue 27 Dec 1831 

DateList Tue 27 Dec 1831 〚1〛

darwinEventsAssoc = Select[histevents,
StringContainsQ[#〚1〛, "Darwin" "Beagle"] && DateList[#〚2〛]〚1〛 ≤ 1882 &]

Recall that in the last chapter, we also retrieved a set of entities representing some of the books that 
Darwin wrote.

darwinBookEntities =
PersonData[Interpreter["ComputedPerson"]["Darwin"], "NotableBooks"];

darwinBookEntities // TableForm

We can visualize both Darwin’s publications (in blue) and some of the significant events in his life (in 
gold) on the same timeline, using the following command. The PlotLayout→“Overlapped” and 
AxesOrigin→Center properties prevent the timeline from becoming too cluttered to read.

TimelinePlot[{darwinBookEntities → "FirstPublished", Keys[darwinEventsAssoc]},
PlotLayout → "Overlapped", AxesOrigin → Center]

Lifespans
Another way to contextualize Darwin’s life is to visualize it in the context of some of his predeces-
sors and interlocutors. In the previous chapter we retrieved birth and death dates for some of the 
people mentioned in Origin. The function and timeline plot below show Darwin’s lifetime compared 
with some of the people who influenced him (his grandfather Erasmus, the explorer Captain Cook, 
earlier natural historians like Lamarck and Cuvier) and some of his younger contemporaries 
(Wallace and Huxley). We use the Interval command to represent all of the time between the birth 
and death dates.

lifespan[person_] :=
Labeled[
Interval[{PersonData[Interpreter["ComputedPerson"][person], "BirthDate"],

PersonData[Interpreter["ComputedPerson"][person], "DeathDate"]}], person]

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     57



TimelinePlot[{{lifespan["James Cook"]}, {lifespan["Erasmus Darwin"]},
{lifespan["Jean-Baptiste Lamarck"]}, {lifespan["Alexander Humboldt"]},
{lifespan["Georges Cuvier"]}, {lifespan["Charles Darwin"]},
{lifespan["Thomas Huxley"]}, {lifespan["Alfred Russel Wallace"]}}]

We can also combine lives and works, as in the following figure. Here each author’s works are given 
the same color as their lifespan.

TimelinePlot[{
{lifespan["Charles Darwin"], Labeled["1839", Style["Beagle", Italic]],
Labeled["1859", Style["Origin", Italic]]},

{lifespan["Charles Lyell"], Labeled[Interval[{"1830", "1833"}],
Style["Principles of Geology", Italic]]},

{lifespan["Robert Chambers"], Labeled["1844", Style["Vestiges", Italic]]}
}]

The Voyage of the Beagle
One of the most important events in Darwin’s life was the voyage that he made on the H.M.S. 
Beagle as a young man. (In fact, the first sentence of Origin refers to it). Using the entity represent-
ing Darwin and the one representing his voyage, we can do some quick date calculations. How long 
did the voyage last? We can use the DateDifference command to find out.

Darwin's Voyage of the H.M.S. Beagle (historical event)

DateDifference[
EntityValue[Interpreter["HistoricalEvent"]["darwin voyage beagle"],
"StartDate"], EntityValue[
Interpreter["HistoricalEvent"]["darwin voyage beagle"], "EndDate"]]

If we would rather have the information in a more traditional form, we can use UnitConvert to 
convert it.

UnitConvert[Quantity[1741, "Days"],
MixedRadix["Years", "Months", "Days", "Hours"]]

How old was Darwin when he set out? When he returned?

DateDifference[
PersonData[Interpreter["ComputedPerson"]["Charles Darwin"], "BirthDate"],
EntityValue[Interpreter["HistoricalEvent"]["darwin voyage beagle"],
"StartDate"], {"Year", "Month", "Day"}]

DateDifference[
PersonData[Interpreter["ComputedPerson"]["Charles Darwin"], "BirthDate"],
EntityValue[Interpreter["HistoricalEvent"]["darwin voyage beagle"],
"EndDate"], {"Year", "Month", "Day"}]

Note that we can also do the unit conversion as part of a call to the DateDifference command.

It would be nice to be able to retrieve the Beagle’s itinerary with a call to Wolfram Alpha, but that is 
not available, at least not yet. In a later chapter we will retrieve a detailed itinerary from a website 
about Darwin. For now, I have simply created a list of a few of the places that the ship visited on its 
voyage around the world. Since each of these are entities, we can use them to do various kinds of 
geospatial computation and visualization.

58     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



beagleBriefItinerary = {1831, 12, 28}, Plymouth (city) ,

{1832, 1, 4}, Madeira Island (island) , {1832, 1, 16}, Praia (city) ,

{1832, 2, 20}, Fernando de Noronha (island) , {1832, 2, 28}, Salvador (city) ,

{1832, 4, 4}, Rio de Janeiro (city) , {1832, 7, 26}, Montevideo (city) ,

{1832, 9, 6}, Bahia Blanca (city) , {1832, 10, 26}, Montevideo (city) ,

{1832, 11, 2}, Buenos Aires (city) , {1832, 11, 14}, Montevideo (city) ,

{1832, 12, 16}, Tierra del Fuego, Argentina (administrative division) ,

{1833, 2, 26}, Falkland Islands (country) ,

{1833, 4, 28}, Maldonado (city) , {1833, 8, 3}, Viedma (city) ,

{1833, 8, 17}, Bahia Blanca (city) , {1833, 9, 20}, Buenos Aires (city) ,

{1833, 11, 4}, Montevideo (city) , {1834, 2, 24}, Wollaston Island (island) ,

{1834, 3, 10}, Falkland Islands (country) , {1834, 6, 28},

Chiloé, Los Lagos, Chile (administrative division) , {1834, 7, 23}, Valparaiso (city) ,

{1834, 11, 21}, Chiloé, Los Lagos, Chile (administrative division) ,

{1834, 12, 13}, Fitzroy Island (island) , {1835, 2, 9}, Valdivia (city) ,

{1835, 3, 4}, Concepción (city) , {1835, 3, 11}, Valparaiso (city) ,

{1835, 5, 14}, Coquimbo (city) , {1835, 7, 19}, Lima (city) ,

{1835, 9, 16}, San Cristóbal (island) , {1835, 11, 15}, Tahiti Island (island) ,

{1835, 12, 21}, Paihia (city) , {1836, 1, 12}, Sydney (city) ,

{1836, 2, 5}, Hobart (city) , {1836, 3, 6}, Albany (city) ,

{1836, 4, 1}, Cocos Keeling Islands (country) ,

{1836, 4, 29}, Mauritius (country) , {1836, 6, 1}, Cape Town (city) ,

{1836, 7, 8}, Saint Helena, Ascension and Tristan da Cunha (country) ,

{1836, 8, 1}, Salvador (city) , {1836, 8, 31}, Praia (city) , {1836, 9, 13},

Azores, Portugal (administrative division) , {1836, 10, 2}, Falmouth (city) ;

There are 43 locations in the brief itinerary. If we think in terms of legs of the journey—the first being 
from Plymouth to Madeira Island, the second from Madeira Island to Praia—then there are 42 legs.

Length[beagleBriefItinerary]

Setting out
We can visualize the first leg of the journey using one of Mathematica’s geospatial commands. We 
start with GeoListPlot, which places the starting and ending points on a map. The GeoLabels→True 
option labels placenames, the GeoRange→“Country” option sets the scale so we can see the whole 
of the United Kingdom, and the Joined→True option shows a geodesic path between the two points.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     59



GeoListPlot[{beagleBriefItinerary〚1, 2〛, beagleBriefItinerary〚2, 2〛},
GeoLabels → True, GeoRange → "Country", Joined → True]

If we would rather see a relief map, we can request one like this.

GeoListPlot[{beagleBriefItinerary〚1, 2〛, beagleBriefItinerary〚2, 2〛},
GeoLabels → True, GeoRange → "Country",
Joined → True, GeoBackground → "ReliefMap"]

We can compute with geospatial entities. For example, the distance between Plymouth and Madeira 
Island (along a geodesic path) is

GeoDistance[beagleBriefItinerary〚1, 2〛, beagleBriefItinerary〚2, 2〛]

GeoPosition takes a place entity and returns latitude and longitude. Here are the coordinates for 
Plymouth.

GeoPosition[beagleBriefItinerary〚1, 2〛]

We can use those coordinates to plot a map at a larger scale (i.e., zoomed in). Here we use the 
GeoGraphics command, set the scale to the size of the city and include a scale bar. This is a 
contemporary map, of course. In a later chapter we will learn how to overlay historical map images 
on contemporary digital maps, a process known as georectification.

GeoGraphics[GeoPosition[beagleBriefItinerary〚1, 2〛],
GeoRange → "City", GeoScaleBar → "Kilometers"]

An interactive map for the voyage of the Beagle
Next we will build an interactive map. We will start with two panels, one for a small-scale map to 
provide context and one for a large-scale map showing the leg of the journey. The function below 
creates two map images given an itinerary and an integer representing which leg of the voyage we 
are visualizing. We scale the range of the context map to be the whole world, and the detail map to 
the distance between the starting and ending points.

mapImageLeg[itin_, n_] :=
With[{dist = GeoDistance[itin〚n, 2〛, itin〚n + 1, 2〛]},
Column[{GeoGraphics[{GeoStyling["OutlineMap"],

Red, Thick, GeoPath[{itin〚n, 2〛, itin〚n + 1, 2〛}]},
GeoRange → All, ImageSize → {300, Automatic}],

GeoListPlot[{itin〚n, 2〛, itin〚n + 1, 2〛}, GeoRange → dist,
GeoScaleBar → Placed[{0, 400} km, {Right, Bottom}], GeoLabels → True,
Joined → True, ImageSize → {300, Automatic}]}, Center, Scaled[0.01]]]

mapImageLeg[beagleBriefItinerary, 1]

It takes some time to create a map, so we will render each of the 42 maps in advance. Then we can 
step forwards and backwards through them quite quickly. In order to do this, we will want to Map the 
rendering function (mapImageLeg) across the list of numbers from 1 to 42. Generating such a list is 
quite easy with the Range command.

Range[3]

The command below simply renders all of the maps. We suppress the output because we don't 
need to see the rendered maps. It takes a while to execute this the first time, so be patient.

Map[mapImageLeg[beagleBriefItinerary, #] &, Range[42]];

Now we can use the Manipulate command to create an interactive interface for our map viewer. 
This will give us a slider that allows us to explore each leg of the journey, one at a time. The list 
{n,1,42,1} is known as an ‘iterator’. It says that n can take values between 1 and 42 in increments of 
1. If you press the plus sign beside the slider, it will open up an interface that allows you to step 
forward and back one frame at a time, or to animate the voyage. Spend a little time familiarizing 
yourself with the Manipulate interface. You will discover that its default animation speed is too fast 
(it skips frames) and needs to be slowed down. In some of the maps, the Beagle is shown impossi-
bly traveling over land. We will remedy this problem in a future visualization.

60     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Now we can use the Manipulate command to create an interactive interface for our map viewer. 
This will give us a slider that allows us to explore each leg of the journey, one at a time. The list 
{n,1,42,1} is known as an ‘iterator’. It says that n can take values between 1 and 42 in increments of 
1. If you press the plus sign beside the slider, it will open up an interface that allows you to step 
forward and back one frame at a time, or to animate the voyage. Spend a little time familiarizing 
yourself with the Manipulate interface. You will discover that its default animation speed is too fast 
(it skips frames) and needs to be slowed down. In some of the maps, the Beagle is shown impossi-
bly traveling over land. We will remedy this problem in a future visualization.

Manipulate[mapImageLeg[beagleBriefItinerary, n], {n, 1, 42, 1}]

Adding dates
Now that we have an interactive map, we can add starting and ending dates to each leg of the 
journey. We use the DateObject command to convert each DateList to an entity, and then a Row 
command to put them side-by-side. (The Invisible command puts a space between the two dates 
that is the width of a lowercase “m”). We then Center the dates in a Column above the maps.

itineraryBrowser[itin_] := Manipulate[Column[
{Row[{DateObject[itin〚n, 1〛], Invisible["m"], DateObject[itin〚n + 1, 1〛]}],
mapImageLeg[itin, n]}, Center], {n, 1, Length[itin] - 1, 1}]

itineraryBrowser[beagleBriefItinerary]

Summary
Investigating the named entities in a text allows you to more easily answer questions about who, 
what, where and when. When those entities are used to query computable data, you can go well 
beyond the internal evidence of your sources, linking them to an ever-expanding network of relevant 
information. Researchers have always done this kind of exploration manually, of course. Program-
ming with Mathematica allows some of this exploration to be performed by machine. We have seen 
a couple of examples of simple reference tools that can be automatically generated to contextualize 
our sources. As we go on, we will find more and more ways that programming can make research 
easier, faster, more powerful and much more efficient.

Generalizing the Examples

Collocations
So far we have investigated a number of ways of automatically finding aspects of a text that are 
distinctive or meaningful. In our search for named entities, for example, we found that capitalization 
can be very useful. And as we have seen, once we have successfully associated a string with an 
entity, we can use that entity to retrieve or compute new information.

Another approach is to search the text for collocations, phrases or n-grams whose meaning goes 
beyond the meanings of the individual words that comprise them. In Origin of Species, for example, 
Darwin uses the phrase ‘natural selection’ to refer to a set of ideas that go well beyond the mean-
ings of either ‘natural’ or ‘selection’. Here we partially automate the process of discovering 
collocations.

We begin by generating bigram frequencies for the whole text of Origin. These are returned as an 
association, sorted in order of descending frequency.

originBigrams = WordCounts[origin, 2];

As we discovered before, the most frequent n-grams contain stopwords.

Short[originBigrams, 5]

We can use the Select command to choose bigrams that occur five or more times in the text.

originBigramsFreq5 = Select[originBigrams, # ≥ 5 &];

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     61



These make up about 10% of the total number of bigrams found in the text.

Length[originBigramsFreq5]  Length[originBigrams] // N

Now we want to get rid of the frequent bigrams that contain one or more stopwords. To do this, we 
can use the Select command along with the nonStopwordQ function we developed earlier. First 
note that we are interested in retrieving the Keys from our association. Here are the first ten.

Keys[originBigramsFreq5]〚1 ;; 10〛

Let’s select the bigrams from the top 50 most frequent that do not include a stopword. There is only 
one example, ‘natural selection’.

Select[Keys[originBigramsFreq5]〚1 ;; 50〛,
(nonStopwordQ[#〚1〛] && nonStopwordQ[#〚2〛]) &]

In the next 50 we find another example, ‘organic beings’.

Select[Keys[originBigramsFreq5]〚50 ;; 100〛,
(nonStopwordQ[#〚1〛] && nonStopwordQ[#〚2〛]) &]

As we dig into the less frequent bigrams, we will begin to find examples that don’t really convey 
much that is distinctive about Origin.

Select[Keys[originBigramsFreq5]〚700 ;; 750〛,
(nonStopwordQ[#〚1〛] && nonStopwordQ[#〚2〛]) &]

The difference between a phrase like 'natural selection' or 'larger genera' and one like 'for instance' 
or 'we shall' is that the former consist of an adjective followed by a noun. So we will limit our search 
to frequent bigrams that consist of an adjective and noun or a pair of nouns.

Here is our list of ‘interesting’ frequent bigrams in Origin. Note that some of them are named entities 
(“South America”, “North America” and “New Zealand”). Many of these terms are the kinds of things 
that you might want to look up in the index of a book.

originBigramsFreq5Interesting =
SelectKeys[originBigramsFreq5], (nonStopwordQ[#〚1〛] && nonStopwordQ[#〚2〛]) &&

adjectiveQ[#〚1〛] || nounQ[#〚1〛] && nounQ[#〚2〛] &;

viewData[originBigramsFreq5Interesting]

Studying these particular bigrams, we can begin to get a sense of Darwin’s technical language. 
We’ve already noted that he used the phrase “natural selection” to refer to a particular collection of 
concepts, and the same is also true of his frequent use of “sexual selection”. We can use the Cases 
command to pull out other bigrams involving “selection”, then use our textSearch function to investi-
gate his use of a particular term. We can see, for example, that he uses “methodical selection” to 
refer to the activities of breeders.

Cases[originBigramsFreq5Interesting, {_, "selection"}]

textSearch[origin, "methodical selection"]

It is not surprising that a book entitled Origin of Species would discuss “species”, but the word 
appears in a number of frequent collocations that suggest the range of the discussion. The same is 
true of Darwin’s use of “forms”. In some cases, the same adjective is frequently used with both 
words (e.g., “new”, “allied”, “dominant”, “living”, “extinct”, “existing”). In other cases, a particular 
adjective is used only with one term (e.g., “distinct species”, “doubtful forms”). The analysis of an 
author’s use of vocabulary at this level can serve a variety of purposes: better understanding his or 
her conceptual world; studying the rise and fall of particular collocations over time or their spread 
through a particular community; resolving questions of disputed authorship, and so on.

Cases[originBigramsFreq5Interesting, {_, "species"}]

62     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Cases[originBigramsFreq5Interesting, {_, "forms"}]

We can also study the distribution of frequently used adjectives. Darwin frequently uses “distinct”, 
for example, in discussing taxonomic categories, and “domestic” in an overlapping but not identical 
set of contexts.

Cases[originBigramsFreq5Interesting, {"distinct", _}]

Cases[originBigramsFreq5Interesting, {"domestic", _}]

Visualizing cooccurrence within chapters
At this point we have developed a number of techniques for studying words in close proximity to one 
another: pattern matching, n-grams, keyword in context listings, collocations, and custom functions 
like stringFindNear. A different approach is to study the distribution of particular words or terms 
across a source or collection of sources. We might ask, for example, whether a particular word or 
term is found throughout a work or limited to one or more chapters.

Let’s begin by creating a function that counts the number of instances of a word or phrase in each 
chapter of Origin. First we create a list of all of the words in the book in order.

originWords = TextWords[origin];

Short[originWords, 5]

Length[originWords]

Recall that each chapter begins with the word “chapter” in uppercase, followed by a space and an 
integer. Some chapters have a “SUMMARY OF CHAPTER” section that we don’t want to mistake 
for the beginning of a new chapter. So the chapter number is important.

textSearch[origin, "CHAPTER"]

We can use the following commands to display the word positions for each instance of “CHAPTER” 
along with some context. Then we simply remove the positions that don’t correspond to actual 
chapter beginnings.

Position[originWords, "CHAPTER"]

Map[{#, originWords〚First[#] ;; First[#] + 3〛} &, Position[originWords, "CHAPTER"]]

originChapterBeginnings =
Complement[Position[originWords, "CHAPTER"], {{39096}, {62529}, {84971}}]

Now that we have this list, we know, for example, that all the words between position 1 and position 
1709 fall into the Introduction, all of the words between 1710 and 13377 fall into Chapter 1, and so 
on. Next we create a function that, given a word position, returns the chapter of Origin that contains 
that instance (we will think of the Introduction as Chapter 0). The Piecewise command is perfect for 
this. It checks a series of conditions and returns the first one that matches. The last condition 
returns a -1 if the input number is outside the bounds of possible positions. That shouldn’t happen.

originChapterLookup[pos_Integer] :=
Piecewise[{{0, 1 ≤ pos < 1710}, {1, 1710 ≤ pos < 13378},

{2, 13378 ≤ pos < 18269}, {3, 18269 ≤ pos < 24470}, {4, 24470 ≤ pos < 40192},
{5, 40192 ≤ pos < 52453}, {6, 52453 ≤ pos < 63627}, {7, 63627 ≤ pos < 75594},
{8, 75594 ≤ pos < 85590}, {9, 85590 ≤ pos < 95349}, {10, 95349 ≤ pos < 105721},
{11, 105721 ≤ pos < 117156}, {12, 117156 ≤ pos < 125749},
{13, 125749 ≤ pos < 140375}, {14, 140375 ≤ pos ≤ 149982}, {-1, True}}]

Now we can check our function. The Chapter 4 summary begins at position 39,096. When we test 
this position, the function should tell us that it is in Chapter 4.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     63



originChapterLookup[39096]

Armed with this function we can get the positions for a particular word.

Position[originWords, "geological"]

Test each position to see which chapter it falls into.

Map[originChapterLookup, Flatten@Position[originWords, "geological"]]

Then use the Tally command to count the occurrences per chapter.

Tally[Map[originChapterLookup, Flatten@Position[originWords, "geological"]]]

For reasons that are explained in the ‘Programming with Mathematica’ section below, this informa-
tion will be more useful to us in the form of a flat list with 15 elements. Each element will either be a 
zero (if the term doesn’t occur in that chapter) or an integer indicating the number of occurrences. 
We can generate this list by using BinCounts instead of Tally. Take a moment to compare the 
output of the two commands.

BinCounts[
Map[originChapterLookup, Flatten@Position[originWords, "geological"]], {0, 15}]

The ArrayPlot command allows us to visualize this list. The ColorFunction→“TemperatureMap” 
option plots numbers from low to high on a spectrum from dark blue to red. The other options are 
necessary to get the chapter numbering right on the ticks across the bottom of the figure.

chticks = Prepend[Range[14], "Intro"];
ct = Map#, Rotatechticks〚#〛, Pi  2 &, Range[15];

ArrayPlot[{{4, 0, 0, 0, 4, 1, 2, 0, 0, 27, 21, 10, 4, 2, 9}},
ColorFunction → "TemperatureMap",
FrameLabel → {Style["geological", Italic], "Chapter"},
RotateLabel → False, FrameTicks → {None, ct}, ImageSize → Large]

In addition to searching darwinOriginWords for the position of individual words, we would also like to 
find the positions of collocations (or more generally, n-grams). We can use the SequencePosition 
command for this task.

SequencePosition[originWords, {"geological", "record"}]

We can make a function that checks a string to see if it is a single word or a collection of words, 
then uses Position or SequencePosition as appropriate. When we are matching multiple words, 
we return only the position of the first one.

StringSplit["geological"]

StringSplit["geological record"]

getPosition[wordlist_, str_] :=
Module[{termlist = StringSplit[str]},
If[Length[termlist] ⩵ 1,
Flatten@Position[wordlist, First@termlist],
Flatten@Map[First, SequencePosition[wordlist, termlist]]]]

getPosition[originWords, "geological"]

getPosition[originWords, "geological record"]

Finally, we will bundle everything we have done so far into a function that lets us visualize the 
cooccurrence of a number of terms at once.

64     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



originChapterCooccurrence[terms_List] :=
Module{termarray, cht, cticks, rticks},
termarray = Map[BinCounts[

Map[originChapterLookup, getPosition[originWords, #]], {0, 15}] &, terms];
cht = Prepend[Range[14], "Intro"];
cticks = Map#, Rotatecht〚#〛, Pi  2 &, Range[15];
rticks = Map[{#, terms〚#〛} &, Range[Length[terms]]];
ArrayPlot[termarray, ColorFunction → "TemperatureMap",
FrameLabel → {None, "Chapter"}, RotateLabel → False,
FrameTicks → {rticks, cticks}, ImageSize → Large]

Here are some of the people who are mentioned in Origin. When we study the figure, we can see 
patterns of cooccurrence that may help us to understand the role that various individuals play in the 
work. Even if we don’t know who Owen, Agassiz and Cuvier were, we can see that they mostly 
show up in the same chapters. We can see that Lyell dominates Chapter 9, Hooker Chapters 11 
and 12, and Owen Chapters 10 and 13. We can see that Murchison, Sedgwick and Dawson are 
similar to Lyell, and so on. 

originChapterCooccurrence[
{"Lyell", "Murchison", "Sedgwick", "Dawson", "Humboldt", "Muller",
"Wallace", "Hooker", "Bentham", "Huxley", "Owen", "Agassiz", "Cuvier"}]

We can also check for cooccurrences between people and places, as shown in the next figure.

originChapterCooccurrence[{"Scotland", "Lyell", "Australia",
"Hooker", "Wallace", "Malay", "Galapagos", "Chile", "Humboldt"}]

Another thing we can do with a visualization like this is study phrases to see how widely they are 
distributed across the text. These are all of the terms that were used to modify the word “species”, 
for example, sorted by decreasing frequency.

StringRiffle /@ Cases[originBigramsFreq5Interesting, {_, "species"}]

originChapterCooccurrence[
StringRiffle /@ Cases[originBigramsFreq5Interesting, {_, "species"}]]

We can see that the more frequent collocations (“distinct species”, “new species”, etc.) are spread 
widely throughout the text, whereas some of the less frequent ones (“pure species”, “original 
species”, “endemic species”) only occur in a single chapter.

Programming with Mathematica

Applying and using pure functions
Suppose we want to add two numbers together. As we’ve seen, Mathematica has a Plus command 
which is usually written with infix notation.

17 + 25

We can also write this with functional notation.

Plus[17, 25]

The two numbers that we give to the Plus command are called arguments. We have seen that we 
can create a pure function by replacing one or more of the arguments with a Slot (#) and adding an 
ampersand to the end (shorthand for the Function command). This pure function will add 17 to 
things. Note that when we evaluate it, it converts the Plus command to infix notation and it gives the 
slot a number (1 in this case).

Plus[17, #] &

We could also create a pure function with Plus that expects two arguments. Here we give them 
numbers ourselves.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     65



We could also create a pure function with Plus that expects two arguments. Here we give them 
numbers ourselves.

Plus[#1, #2] &

Once we have a pure function expression (whether it expects to receive one argument or two), we 
can use it by applying it to values. Here is how we add 17 to 25 using our ‘Plus 17’ pure function.

(Plus[17, #] &)[25]

We could also write this with infix notation.

(17 + # &)[25]

Here is how we add 17 to 25 using our pure function that expects to receive two arguments.

(Plus[#1, #2] &)[17, 25]

We could also write this with infix notation.

(#1 + #2 &)[17, 25]

Using pure functions like this adds a level of conceptual complexity that we usually don’t need, at 
least if we just want to add a few numbers together. Pure functions become very useful when we 
want to apply them repeatedly, however.  One case that we have seen is Map.  Here we add 17 to a 
list of numbers.

Map[(# + 17 &), {25, 50, 75, 150}]

Another case where pure functions are very useful is with commands like Select. Here is a pure 
function that checks to see whether a number is between 7 and 17, inclusive.

7 ≤ # ≤ 17 &

Here we use the pure function to Select numbers from a list that match this criterion.

Select[{3, 45, 32, 13, 4, 77, 12, 8, 19, 9, 44, 121, 32, 10}, 7 ≤ # ≤ 17 &]

Or we could use the CountsBy command to count how many numbers in a list match the criterion 
and how many don’t.

CountsBy[{3, 45, 32, 13, 4, 77, 12, 8, 19, 9, 44, 121, 32, 10}, 7 ≤ # ≤ 17 &]

Vectors and matrices
In addition to supporting computation with data structures like strings, lists and associations, Mathe-
matica also supports computation with mathematical objects. We have already encountered inte-
gers, rational numbers and real numbers. Some of the most useful mathematical objects for digital 
research methods are vectors and matrices, the subject of the branch of mathematics known as 
linear algebra. You don’t need to be familiar with linear algebra to understand this section (if you 
are, it won’t hurt, of course.)

In Mathematica, a vector is represented as a list. If we want to describe something in Cartesian 
coordinates, for example, we use a pair of numbers representing the horizontal (x) and vertical (y) 
position. We can plot a number of such points with the Graphics and Point commands. The com-
mand Blue changes the color of all of the points that follow, and the PointSize[Medium] command 
tells Graphics to draw slightly larger dots. The Axes→True option is required to see the x and y axes.

Graphics[{Blue, PointSize[Medium], Point[{2, 3}], Point[{1, -1}],
Point[{-2, -2}], Point[{-1, 3}]}, ImageSize → Small, Axes → True]

Another interpretation of each of these vectors is as an arrow from the origin {0,0} to {x,y}. We can 
use the Arrow command instead of Point if we wish to visualize this.

66     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Graphics[{Blue, Arrow[{{0, 0}, {2, 3}}],
Arrow[{{0, 0}, {1, -1}}], Arrow[{{0, 0}, {-2, -2}}],
Arrow[{{0, 0}, {-1, 3}}]}, ImageSize → Small, Axes → True]

Because each of our points or arrows can be specified with a pair of numbers, we can think of each 
position in the vector as representing a different dimension. This example is two-dimensional, but 
we could easily make a three-dimensional example using vectors with three positions, {x,y,z}. We 
call vectors with n elements “n-dimensional”. They are more difficult to visualize but not necessarily 
more difficult to work with. In fact, we have already started working with them.

In the previous section we wanted to visualize the number of occurrences of a particular word or 
term in each chapter of Origin. Our original output looked like this:

Tally[Map[originChapterLookup, Flatten@Position[originWords, "geological"]]]

There are four tokens of “geological” in the Introduction, four in Chapter 4, one in Chapter 5, two in 
Chapter 6, and so on. To use the ArrayPlot command, however, we needed a vector instead. (In 
this context, we can think of “array” as another word for vector or matrix.) To get the corresponding 
vector we used the BinCounts command instead of Tally.

BinCounts[
Map[originChapterLookup, Flatten@Position[originWords, "geological"]], {0, 15}]

This is a fifteen-dimensional vector that represents the distribution of the word “geological” through-
out the chapters of Origin of Species.

A matrix is represented in Mathematica as a nested list, a list of lists. If we wanted to visualize the 
occurrence of both “geological” and “record” in various chapters (not necessarily as a collocation) 
we would need to provide a list of lists to our plotting function. Here is the vector for the word 
“record”.

BinCounts[
Map[originChapterLookup, Flatten@Position[originWords, "record"]], {0, 15}]

Combining the two vectors we have this nested list.

{{4, 0, 0, 0, 4, 1, 2, 0, 0, 27, 21, 10, 4, 2, 9},
{0, 4, 0, 1, 1, 0, 4, 0, 0, 16, 8, 1, 0, 2, 9}}

We can visualize it as a matrix with MatrixForm. This makes it easier to see that it has two rows 
and fifteen columns.

MatrixForm[{{4, 0, 0, 0, 4, 1, 2, 0, 0, 27, 21, 10, 4, 2, 9},
{0, 4, 0, 1, 1, 0, 4, 0, 0, 16, 8, 1, 0, 2, 9}}]

We can also visualize it with ArrayPlot.

ArrayPlot[{{4, 0, 0, 0, 4, 1, 2, 0, 0, 27, 21, 10, 4, 2, 9},
{0, 4, 0, 1, 1, 0, 4, 0, 0, 16, 8, 1, 0, 2, 9}}, ColorFunction → "TemperatureMap"]

Vector distance and similarity
In addition to helping us with visualization, vector representation gives us a way to determine 
whether two things are similar or not. Let’s return to the two dimensional case. We want to say that 
two vectors that are pointing in the same general direction are more similar to one another (or less 
distant from one another) than two vectors that are pointing in different directions. The pair of blue 
vectors below are similar (or not very distant from one another) and the green and red one are 
different (or distant).

Graphics[{Blue, Arrow[{{0, 0}, {2, 3}}],
Arrow[{{0, 0}, {2, 4}}], Red, Arrow[{{0, 0}, {-2, -2}}], Green,
Arrow[{{0, 0}, {-1, 3}}]}, ImageSize → Small, Axes → True]

One measure of distance or similarity between vectors is called CosineDistance, implemented in 
Mathematica by a command of the same name. For the blue vectors the value is very small.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     67



One measure of distance or similarity between vectors is called CosineDistance, implemented in 
Mathematica by a command of the same name. For the blue vectors the value is very small.

CosineDistance[{2, 3}, {2, 4}] // N

For the red and green vector the value is much larger.

CosineDistance[{-2, -2}, {-1, 3}] // N

We can use the same measure on n-dimensional vectors. In the previous section, for example, we 
noticed that Murchison and Sedgwick appeared in the same contexts. We expect the CosineDis-
tance between their respective vectors to be low.

BinCounts[
Map[originChapterLookup, Flatten@Position[originWords, "Murchison"]], {0, 15}]

BinCounts[
Map[originChapterLookup, Flatten@Position[originWords, "Sedgwick"]], {0, 15}]

CosineDistance[{0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0}] // N

On the other hand, Murchison and Wallace appeared in different contexts. So their CosineDistance 
should be higher.

BinCounts[
Map[originChapterLookup, Flatten@Position[originWords, "Wallace"]], {0, 15}]

CosineDistance[{0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0},
{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0}]

For frequent collocations, the CosineDistance between the two terms should be low. Here is the 
calculation for “natural” and “selection”.

BinCounts[
Map[originChapterLookup, Flatten@Position[originWords, "natural"]], {0, 15}]

BinCounts[
Map[originChapterLookup, Flatten@Position[originWords, "selection"]], {0, 15}]

CosineDistance[{1, 4, 4, 4, 56, 47, 61, 35, 7, 9, 14, 7, 7, 35, 27},
{0, 30, 3, 3, 81, 57, 65, 42, 5, 4, 9, 6, 4, 15, 23}] // N

For frequent words that aren’t collocates (e.g., “natural” and “beings”) the measure should be higher.

BinCounts[
Map[originChapterLookup, Flatten@Position[originWords, "beings"]], {0, 15}]

CosineDistance[{1, 4, 4, 4, 56, 47, 61, 35, 7, 9, 14, 7, 7, 35, 27},
{6, 2, 2, 10, 19, 5, 6, 1, 7, 2, 5, 6, 5, 10, 22}] // N

In the next chapter we will see that the ability to measure the distance between vectors allows us to 
automate a variety of very useful tasks.

Mathematica Commands to Review

◼ BE: Basic Examples, GE: Generalizing the Examples, PM: Programming with Mathematica, FE: 
Further Exploration

◼ ArrayPlot (GE)

◼ Arrow (PW)

◼ BinCounts (GE)

◼ Center (BE)

68     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



◼ CosineDistance (PW)

◼ CountsBy (PW)

◼ DateDifference (BE)

◼ DateList (BE)

◼ DateObject (BE)

◼ GeoGraphics (BE)

◼ GeoListPlot (BE)

◼ GeoPosition (BE)

◼ Graphics (PW)

◼ Interval (BE)

◼ Invisible (BE)

◼ Manipulate (BE)

◼ Piecewise (GE)

◼ Point (PW)

◼ SequencePosition (GE)

◼ SparseArray (FE)

◼ StringContainsQ (BE)

◼ TimelinePlot (BE)

◼ UnitConvert (BE)

ch05

Chapter 05: Information Retrieval

Overview

In the first few chapters we discovered that much can be learned about a text simply by studying the 
words and n-grams that occur most frequently in it. Using pattern matching, we were also able to 
locate keywords in the text and display them in context. Some of those keywords referred to entities 
like people, places and dates which we used to retrieve computable data. We can do much more 
with a mathematical approach to textual analysis, however. Given a text, we can use computational 
methods to figure out what it is about. Given one text, we can find others that are similar to it. And 
given a large collection of texts, we can automatically cluster them into groups of related docu-
ments. These techniques all fall under the broad heading of information retrieval, and what they 
have in common are a variety of methods for determining when two texts are similar to one another, 
or when a text is relevant to a particular query or information need.

Basic Examples

Working with pages
Up until now we have been working as if we did not have pagination information for our copy of 
Origin of Species. We were able to use string matching to extract chapters based on internal evi-
dence in the text, but for most of our examples, we simply worked with sequences of characters or 
words. If you are analyzing some kinds of texts, such as web pages or e-books, this may be the 
best that you can do. Most such documents are designed to reflow gracefully so they can be read 
on screens with different resolutions. Under such conditions, the traditional page is not really a 
natural unit of analysis, and it makes more sense to work with named subsections, sections or 
chapters.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     69



Up until now we have been working as if we did not have pagination information for our copy of 
Origin of Species. We were able to use string matching to extract chapters based on internal evi-
dence in the text, but for most of our examples, we simply worked with sequences of characters or 
words. If you are analyzing some kinds of texts, such as web pages or e-books, this may be the 
best that you can do. Most such documents are designed to reflow gracefully so they can be read 
on screens with different resolutions. Under such conditions, the traditional page is not really a 
natural unit of analysis, and it makes more sense to work with named subsections, sections or 
chapters.

Origin of Species was first published as a codex in 1859, however, so the page is definitely an 
appropriate unit of analysis. If we want to do a page-based analysis of some sort, we have a num-
ber of options. One is to try to estimate where the page breaks would most likely be. Since Mathe-
matica is designed to take advantage of computable data, it knows about many characteristics of 
familiar objects. We have already seen evidence of this in our use of commands like WordData, 
WolframAlpha and WikipediaData. As we progress we will draw on computable data whenever 
possible.

The FormulaLookup command allows us to search through a very large set of formulas that 
describe how things in the world behave. The following example shows that we can use Mathemat-
ica to estimate the number of words per page for books, manuscripts, magazines and screenplays, 
and that we can take into account variables like pagination, spacing and font (if we know them).

FormulaLookup["words per page"]

Assuming we don’t know anything about Origin’s pagination, spacing or font, we can get a formula 
for the number of words per page with the FormulaData command as follows.

FormulaData[{"WordsPerPage", "Book"}]

This says that Mathematica’s best guess is 250 words per page on average. (Alternately, the total 
number of pages is 1/250th of the total number of words).  We can substitute values into this for-
mula with a Rule. How many pages for 150,000 words?

FormulaData[{"WordsPerPage", "Book"}, {"w" → 150000}]

How many words in 27 pages?

FormulaData[{"WordsPerPage", "Book"}, {"p" → 27}]

But we don’t have to estimate the pagination in this case. In fact, we can request a copy of Origin 
from ExampleData that is formatted as a list of strings, where each string represents a header, a 
space, or the contents of one page.

originLines = ExampleData[{"Text", "OriginOfSpecies"}, "Lines"];

Head[originLines]

Length[originLines]

Chapter titles get their own lines.

originLines〚1〛

The space between a title and text is a null string (i.e., “”). When we evaluate the expression, we 
don’t see anything.

originLines〚2〛

We can use the FullForm, Head and StringLength commands to see that this apparent nothing-
ness is actually a string of zero length.

FullForm[originLines〚2〛]

Head[originLines〚2〛]

StringLength[originLines〚2〛]

The third line of originLines is the string containing the text of the first page.

70     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



originLines〚3〛

As with the example of sentence lengths in Chapter 1, we can study both the number of characters 
and the number of words per line.

ListPlot[Map[StringLength, originLines], Filling → Axis,
AxesLabel → {"Line Number", "Length in Characters"}, ImageSize → Large]

ListPlot[Map[WordCount, originLines], Filling → Axis,
AxesLabel → {"Line Number", "Length in Words"}, ImageSize → Large]

We can also plot the distribution of line lengths in words, using the Histogram command. The figure 
below shows us that there are more than 800 lines that are 50 words or shorter; the rest of the lines 
are typically a few hundred words.

Histogram[Map[WordCount, originLines]]

How many lines are blank (i.e., used as spacers)?

Count[originLines, ""]

That leaves about fifty lines which contain between 1 and 50 words. Let’s have a look at those. We 
can see that many of them are summary statements.

viewData[Select[originLines, 1 ≤ WordCount[#] ≤ 50 &]]

Searching pages
It would be nice to have a search function that returns pages where a term or phrase appears. We 
can actually do that quite easily with the Select and StringContainsQ commands. For example, the 
word ‘electricity’ appears on one page of Origin.

Select[originLines, StringContainsQ[#, "electricity"] &]

It would also be nice to know which line contains that page in the originLines list. That will require a 
little bit more work. First we are going to make a list of rules where we have a line number pointing 
to the string with the actual contents of that line. The beginning of this list will look like this:
{1 → "INTRODUCTION.",
2 → "",
3 → "When on board H.M.S. 'Beagle,' as naturalist, ...",
4 → "",
5 → "My work is now nearly finished; but as it will take me ...",
...}

We need a total of 1515 line numbers.

Length[originLines]

We can use the Range command to generate a list of numbers from 1 to n. Here is how we gener-
ate the numbers from 1 to 3.

Range[3]

We can use the Thread and Rule commands to create a nested list where each line number is 
paired with the contents of that line. Study the next example.

Thread[Rule[Range[3], {a, b, c}]]

So this is the code we need to create the nested list of line numbers and line contents shown above.

Thread[Rule[Range[Length[originLines]], originLines]]

Now we need to modify the pure function that our Select command uses. This version looked at 
each element in originLines and returned those strings that contained the word ‘electricity.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     71



Now we need to modify the pure function that our Select command uses. This version looked at 
each element in originLines and returned those strings that contained the word ‘electricity.

StringContainsQ[#, "electricity"] &

But each element in our list with line numbers is a Rule. The first part of the rule is the line number, 
and the second part of the rule is the string. So we need our pure function to search only in the 
second part. This is what the pure function looks like now.

StringContainsQ[#〚2〛, "electricity"] &

We can now put everything together into a function to search originLines. We hand the results off to 
the TabView command, which uses the line number to label each tab.

lineSearch[linelist_, str_] :=
TabView[Select[Thread[Rule[Range[Length[linelist]], linelist]],

StringContainsQ[#〚2〛, str] &]]

lineSearch[originLines, "electricity"]

Here is another example.

lineSearch[originLines, "crab"]

The document vector model
In the last chapter we saw that we can use vectors to study the distribution of a word or phrase 
throughout a text. The expression below shows how many times the word ‘organic’ occurs in the 
Introduction and each of the fourteen chapters of Origin, represented as a fifteen-dimensional vector.

BinCounts[
Map[originChapterLookup, Flatten@Position[originWords, "organic"]], {0, 15}]

We also learned that we can use a measure called CosineDistance to figure out if two different 
words are distributed throughout the text in a more-or-less similar fashion.

But what if we want to study the similarity or difference of two texts? These texts could be whole 
documents, pieces of documents like chapters, sections or pages, or even sentences or short 
passages. We can use another, different vector representation to accomplish this.

Recall that we have already developed methods to determine the frequency of words. Here is a list 
of word frequencies for the whole of Origin.

originWordFreqs = WordCounts[origin, IgnoreCase → True];

Short[originWordFreqs, 5]

Suppose we take the first page of the book.

originLines〚3〛

We can convert it to a list of lowercase words, remove the stopwords, and then get rid of duplicates. 
(This representation, the bag of words, was introduced in Chapter 1).

line3words = Union@DeleteStopwords@ToLowerCase@TextWords[originLines〚3〛]

Then we can look up the frequency of each of those words in originWordFreqs, and Sort in order of 
descending frequency. (Note our use of the Greater command in this context. We also used Rest 
here to get rid of the first element of line3words, the “...”, because its frequency was not counted by 
the WordCounts command.)

originWordFreqs〚{"board", "beagle", "naturalist"}〛

Sort[originWordFreqs〚Rest@line3words〛, Greater]

Some of these words, like ‘philosophers’ or ‘mysteries’, only appear once in the book, on this page. 
Other words, like ‘species’, occur many times throughout the book. If we want to compare this page 
with other pages, a word like ‘philosophers’ doesn’t really do anything for us. This page, unlike every 
other page, contains that one word, so it is different from all the other pages in that sense. Whether 
a page contains the word ‘species’ or not is more useful, unless the word occurs on every page in 
the book. Our hunch is that pages that contain many of the same high-frequency words will be more 
similar to one another than they will be to pages that don’t contain many of the same words. We can 
capture this idea with a vector representation.

72     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Some of these words, like ‘philosophers’ or ‘mysteries’, only appear once in the book, on this page. 
Other words, like ‘species’, occur many times throughout the book. If we want to compare this page 
with other pages, a word like ‘philosophers’ doesn’t really do anything for us. This page, unlike every 
other page, contains that one word, so it is different from all the other pages in that sense. Whether 
a page contains the word ‘species’ or not is more useful, unless the word occurs on every page in 
the book. Our hunch is that pages that contain many of the same high-frequency words will be more 
similar to one another than they will be to pages that don’t contain many of the same words. We can 
capture this idea with a vector representation.

Here are the 200 most frequent words in Origin, not including stopwords.

freq200 = DeleteStopwords[Keys[originWordFreqs]]〚1 ;; 200〛

Suppose we use these words, in this order, to specify a 200-dimensional vector. Then we can 
represent any given page by putting a one in the column if that word appears on that page, and a 
zero otherwise. Page one, for example, contains the words ‘species’ and ‘period’, but does not 
contain the words ‘forms’, ‘varieties’, ‘selection’, etc. Its vector will look like this:

We don’t need to figure out the vector by hand, of course. Instead, we will compute it using the 
getFreqVector function shown here. This function is derived and explained in the ‘Programming with 
Mathematica’ section below.

getFreqVector[textstr_, freq_] :=
ReplacePartConstantArray[0, {Length[freq]}],
MapFirst@First@Position[freq, #] → 1 &,
Intersection[DeleteStopwords@ToLowerCase@TextWords[textstr], freq]

Here is the vector for the first page of Origin.

line3vec = getFreqVector[originLines〚3〛, freq200]

This is the second page of the book, and its vector representation.

originLines〚5〛

line5vec = getFreqVector[originLines〚5〛, freq200]

Now to determine how similar or different two vectors are, we will use a mathematical operation 
called the vector product. In Mathematica you use the Dot command to multiply vectors, like this:

Dot[{0, 0}, {0, 1}]

This can also be written as

{0, 1}.{0, 0}

Given two vectors {a,b,c} and {d,e,f} the vector product is defined as

{a, b, c}.{d, e, f}

Note that if either a or d is 0, then their product ad will also be zero. If both are 1, then their product 
will be 1.

{0, b, c}.{0, e, f}

{0, b, c}.{1, e, f}

{1, b, c}.{1, e, f}

The same logic goes for b and e, and for c and f. So for each column where both vectors have a 1, 
one will be added to the vector product. Study the following examples.

{0, 0, 0}.{0, 1, 1}

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     73



{1, 0, 0}.{0, 1, 1}

{1, 0, 0}.{1, 1, 1}

{1, 1, 0}.{1, 1, 1}

{1, 1, 1}.{1, 1, 1}

To test how many of the 200 most frequent words two pages have in common, we simply multiply 
their vectors.

line3vec.line5vec

We can read the result as saying that these two pages have 4 of the 200 most frequent words in 
common, not including stopwords.

It is important to note that this particular model is much more general than the example we have 
shown. Here we used the vector to represent a single page, and the vector product to determine the 
similarity of two pages. But we could just have easily determined the word frequencies for a whole 
corpus of documents (say the complete works of Darwin, or the complete works of a large group of 
nineteenth-century naturalists), and then used each vector to represent the high-frequency terms 
found in an individual document (say Darwin’s 1861 letter to The Field on the “Influence of the form 
of the brain on the character of fowls”.) The document vector model gives us one very powerful way 
of characterizing a large space of texts and of measuring similarity or difference between texts in 
that space.

Show me more like this
Once we have computed the vector representation for a particular text (whether it is a page or some 
other smaller or larger unit), we can compare that vector with others to accomplish a variety of 
goals. We can find other texts that are similar to one we are interested in, for example.

Let’s start by computing freq200 vectors for each line in our originLines list. Recall that each ele-
ment in this list is either a header (like “INTRODUCTION.”), a null string used as a spacer (“”), or a 
string containing the text of a page. In the case of a spacer, the vector is going to consist of a list of 
200 zeros because none of the high-frequency words appear in the empty string. That is not a 
problem for us, however, because the vector product measure only counts matching ones and 
ignores matching zeros. So the spacer lines will be maximally distinct from any lines containing the 
text of pages.

originFreq200Vectors = Map[getFreqVector[#, freq200] &, originLines];

We can look up the vector for the first page (line 3 of originLines) like this:

originFreq200Vectors〚3〛

Now suppose in the course of our research we come across the following page and find it to be 
quite interesting for whatever reason. We can use the document vector model to find other pages 
that are most similar to it.

originLines〚1487〛

The vector product gives us a way of measuring how similar this page is to another page. We see, 
for example that the page we are interested in has little in common with line 3 (the first page of text) 
or line 5 (the second page of text).

originFreq200Vectors〚1487〛.originFreq200Vectors〚3〛

originFreq200Vectors〚1487〛.originFreq200Vectors〚5〛

We can Map the vector product across all of the vectors for the book and ListPlot the results. Note 
that the maximum similarity is 24, where the vector is multiplied by itself. The next most similar 
pages share 14 high-frequency words, then a few pages share 12 words, and so on. The Tooltip 
command allows us to hover over a particular point with the mouse and see the exact value of that 
point.

74     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



We can Map the vector product across all of the vectors for the book and ListPlot the results. Note 
that the maximum similarity is 24, where the vector is multiplied by itself. The next most similar 
pages share 14 high-frequency words, then a few pages share 12 words, and so on. The Tooltip 
command allows us to hover over a particular point with the mouse and see the exact value of that 
point.

ListPlot[Tooltip[Map[originFreq200Vectors〚1487〛.# &, originFreq200Vectors]],
PlotRange → Full, ImageSize → Full,
AxesLabel → {"Line Num", "Dot[Line 1487, Line Num]"}]

The following function allows us to find the line numbers of n other lines with the highest similarity to 
the one we are interested in. It is derived and explained in the ‘Programming with Mathematica’ 
section below.

findSimilarLines[freqvs_, line_, n_] :=
Rest[MaximalBy[Thread[Rule[Range[Length[freqvs]], freqvs]],

freqvs〚line〛.#〚2〛 &, n + 1]]〚All, 1〛

If we ask for the pages that are most similar to originLines〚1487〛 we get the following list.

findSimilarLines[originFreq200Vectors, 1487, 4]

You can have a look at each of the results and see what you think. In my opinion the closest match 
is this one.

originLines〚1381〛

The example is not perfect, but it is still pretty impressive. Using nothing more than the presence or 
absence of a small collection of terms, we are able to say that one text is similar to another one. Or 
to put it a different way, if you are interested in one of these texts, chances are that you will find that 
the other one is relevant to your research, too. In fact, there are a number of ways we can improve 
the performance of the document vector technique without complicating it too much. For one thing, 
we only used vectors with 200 terms. We might find that we get better performance simply by 
increasing the length of our vectors, which is a simple modification to make. Another thing that can 
improve performance, sometimes greatly, is to use a more sophisticated scheme than coding for the 
presence or absence of a given term with a one or zero. In the next section we will learn about a 
measure called TF-IDF which can be used to weight document vectors.

Summary
The document vector model allows us to represent any text as a multidimensional vector of num-
bers. Using techniques from linear algebra we can then determine the similarity or difference of a 
pair of texts by performing computations on their respective vectors. These measurements of 
similarity serve as the basis for a variety of tasks in information retrieval. The example that we 
considered was one of finding texts related to a sample text (‘show me more like this one’). In the 
next section we will develop related methods that allow us to solve other kinds of problems, such as 
determining what a text is about, or automatically grouping texts into categories.

Generalizing the Examples

TF-IDF: Measuring the importance of a word
In order to figure out what a text is about, we need some way of measuring the importance of a 
given word in the text. We will use a measure called TF-IDF, which stands for ‘term frequency-
inverse document frequency’. There are a lot of different ways to calculate TF-IDF, but they all 
capture the basic intuition that there are three categories of word.

1. A word that occurs on (practically) every page doesn’t tell you anything special about a 
particular page. It is a stopword.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     75



2. A word that occurs only once or is sprinkled a few times through the whole document or 
corpus of documents probably can be safely ignored.

3. A word that occurs a number of times on one page but is relatively rare in the document or 
overall corpus plays an important role in figuring out what that page is about. 

We will simply introduce one method of calculating TF-IDF here and leave some of the other options 
until the ‘Further Exploration’ section below.

Determining document frequencies for the whole book
As before, we will continue to work with Darwin’s Origin of Species. We start by splitting the text into 
a list of words and converting all to lowercase. We then determine the word frequencies for the 
whole document. Instead of using the WordCounts command, we will demonstrate another method 
of doing this. (This particular method was the subject of one of the exercises in Chapter 1.)

We start with the StringSplit command, which breaks a string apart based on a pattern of 
separators.

StringSplit["This is a test", Whitespace]

Note that splitting on whitespace leads to problems with punctuation.

StringSplit[
"This is a test. It includes, among other things, punctuation.", Whitespace]

A better way is to use anything that is not a word character to split the string.

StringSplit["This is a test. It includes, among other things, punctuation.",
Except[WordCharacter] ..]

Now that we know enough to use StringSplit to convert the text of Origin into a list of lowercase 
words, we can do so. The total word count that we get when we do this is a bit different from the 
output of the WordCount command. This method (incorrectly) treats ‘H.M.S.’ as three separate 
words rather than a single one, for example.

originWholeList =
Map[ToLowerCase, StringSplit[origin, Except[WordCharacter] ..]];

Length[originWholeList]

Short[originWholeList, 3]

Next we need to count the number of tokens of each word type. We use the Tally command for this. 
Tally outputs a list of lists. Each element is a list consisting of a type, followed by the number of 
tokens of that type.

Tally[{a, b, c, a, b, d, a, e, c, b, d, b}]

The output of Tally is alphabetized by word types, but we usually prefer to have results sorted by 
inverse frequency. We use the Sort command with a pure ordering function to do this. (Pure func-
tions and sorting were discussed in the ‘Programming with Mathematica’ sections of Chapters 1 and 
2, but you don’t really have to understand them to follow this example. You just have to know that 
the function basically tells Sort in what order to put the results it outputs).

docFreq = Sort[Tally[originWholeList], #1〚2〛 > #2〚2〛 &];

Short[docFreq, 6]

In Chapter 2 we learned how to retrieve a list of stopwords using the WordData command. Once we 
have such a list, we can look at the fifty most common words in Origin that are not stopwords. 
Looking at these words gives us a pretty good sense of what the book as a whole is about.

76     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



stopwords = WordData[All, "Stopwords"];

Take[Select[Take[docFreq, 200], Not[MemberQ[stopwords, First[#]]] &], 50]

Suppose, however, that we wish to know what a portion of the book is about. In the ‘Basic Exam-
ples’ section of this chapter, we simply used the presence or absence of one of these terms on a 
given page as an indicator of what that page was about. Here we will use TF-IDF instead.

What is Chapter 9 of Origin of Species about?
To be concrete, let’s say that we are interested in trying to figure out what Chapter 9 of Origin is 
about. As shown previously, we can use pattern matching to pull out Chapter 9 as a string.

ch9 = StringCases[origin, "CHAPTER 9. " ~~ Shortest[x__] ~~ "CHAPTER" → x]〚1〛;

Next we split the Chapter 9 string into separate words and convert each to lowercase using the 
same method we just used for the whole book.

ch9List = Map[ToLowerCase, StringSplit[ch9, Except[WordCharacter] ..]];

Short[ch9List, 6]

The Union command allows us to create a bag of words. These are all of the distinct word types 
that appear in Chapter 9 of Origin. There are 1640 of them.

ch9Terms = Union[ch9List];

Length[ch9Terms]

Short[ch9Terms, 6]

The term frequencies are simply the frequencies of all of the words that appear in Chapter 9. Again, 
we are using the method we just developed. We don’t have to worry about removing stopwords, 
because their TF-IDF score will be relatively low.

ch9TermFreq = Sort[Tally[ch9List], #1〚2〛 > #2〚2〛 &];

Short[ch9TermFreq, 6]

The docFreq list that we generated earlier contains document frequencies for the whole text of 
Origin. Here, we only want document frequencies for the terms that appear in Chapter 9. First we 
need a way of determining whether something appears in a list or not. The MemberQ command 
does that.

MemberQ[{a, b, c}, b]

MemberQ[{a, b, c}, e]

MemberQ[ch9Terms, "physical"]

MemberQ[ch9Terms, "physician"]

Now we need to go through the docFreq list and pull out document frequencies for the terms that 
appear in Chapter 9. We will use the Select command to do this. Select takes a list and a function 
describing the elements that are to be selected. Since each element in the docFreq list is itself a list 
with two items (the word type and its frequency)...

Short[docFreq]

... we use a pure function based on MemberQ to do the matching based on the word type. (Again, 
you don’t have to understand pure functions to follow the example. The list ch9DocFreq is a subset 
of the docFreq list containing document frequencies for only those terms that appear in Chapter 9).

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     77



ch9DocFreq = Select[docFreq, MemberQ[ch9Terms, #〚1〛] &];

Short[ch9DocFreq, 6]

Looking at ch9TermFreq and ch9DocFreq we can see, for example, that the word ‘the’ appears 695 
times in Chapter 9 of Origin, and 10141 times in the book as a whole.

Calculating TF-IDF
Now we have term frequencies for every term that appears in Chapter 9, and we have document 
frequencies for every term that appears in Chapter 9. So we have enough information to compute 
the TF-IDF for every term that appears in Chapter 9. Here is one way to calculate it.

tfidf[termfreq_, docfreq_, numdocs_] :=
Log[termfreq + 1.0] Lognumdocs  docfreq

Let’s try to calculate the TF-IDF for one term that appears in Chapter 9, ‘tapir’.

MemberQ[ch9Terms, "tapir"]

We can retrieve its term frequency and document frequency. The fact that they are the same num-
ber tells us that ‘tapir’ occurs three times in Origin, and all three instances are in Chapter 9.

Cases[ch9TermFreq, {"tapir", _}]

Cases[ch9DocFreq, {"tapir", _}]

We are comparing Chapter 9 to the other chapters in Origin. Since there are 15 of them, we set the 
number of documents to 15. The TF-IDF score for “tapir” is 

tfidf[3, 3, 15]

Let’s compare that score to the score for a stopword

Cases[ch9TermFreq, {"the", _}]

Cases[ch9DocFreq, {"the", _}]

tfidf[695, 10141, 15]

Very much lower! Let’s compare the score for ‘tapir’ with the score for a word that occurs frequently 
throughout Origin, ‘selection’.

Cases[ch9TermFreq, {"selection", _}]

Cases[ch9DocFreq, {"selection", _}]

tfidf[4, 383, 15]

If we were comparing Origin with another text (maybe one that was not about evolution), then the 
TF-IDF score for ‘selection’ would be relatively high. But when we compare one part of Origin with 
another part, the TF-IDF score for ‘selection’ may be relatively low in some cases, and high in 
others, depending on which part of the text we are focusing on.

The importance of using logarithms
The Log function plays an important role in determining the TF-IDF. As we saw in Chapter 1—and 
as we can see if we look at docFreq above—some terms occur much more frequently than others. 
In our TF-IDF calculation we need to prevent these more frequent terms from dominating the less 
frequent ones. So we use the Log command to take the natural logarithms of the two parts of our 
equation (the TF and the IDF). First, a quick review of what logarithms do.

A logarithm makes it easier to compare numbers that differ greatly in scale. Suppose, for example, 
you have a list of values like the following

78     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



A logarithm makes it easier to compare numbers that differ greatly in scale. Suppose, for example, 
you have a list of values like the following
{3., 870., 75., 88 430., 18., 12 007.,
239 021., 7689., 51 982., 11., 785 324., 360 400.}

If you plot those on a linear scale, the handful of very large values dominate your view. Most of the 
other values appear so close to zero that it is hard to discriminate among them in a meaningful way.

ListPlot[{3., 870., 75., 88430., 18.,
12007., 239021., 7689., 51982., 11., 785324., 360400.},

Filling → Axis, PlotRange → Full, AxesLabel → {None, "Raw Value"}]

If we take the Log of each of our values we get the following list.

Log[{3., 870., 75., 88430., 18., 12007.,
239021., 7689., 51982., 11., 785324., 360400.}]

If we plot this list, we get the following figure. The largest value is still the 11th one, the second 
largest is still the 12th, and so on. The smallest value (the 1st) corresponds to the smallest value in 
our original list. We can now use the same graph to compare small values as easily as large ones.

ListPlot[{1.09861, 6.76849, 4.31749, 11.39, 2.89037,
9.39325, 12.3843, 8.94755, 10.8587, 2.3979, 13.5739, 12.795},

Filling → Axis, PlotRange → Full, AxesLabel → {None, "Logs"}]

Drawing the figure like this, with a linear scale on the x axis, hides the fact that the difference 
between the two smallest numbers (3 and 11) is nowhere near as large as the difference between 
the two largest (360,400 and 785,324). It is more useful to draw the figure with a logarithmic scale 
on the x axis. That is what the ListLogPlot command does. Note that we give it our original data as 
input. Compare this figure to the previous two.

ListLogPlot[{3., 870., 75., 88430., 18.,
12007., 239021., 7689., 51982., 11., 785324., 360400.},

Filling → Axis, PlotRange → Full, AxesLabel → {None, "Value"}]

When we look at this figure, we can see that the first element is a bit larger than 2 (it is 3) and the 
10th element is a bit larger than 10 (it is 11). We can also see that the largest element is a bit less 
than 1 million 106 and the second largest is a bit less than half a million. Using a graph with a log 
scale, we can make rapid comparisons between values that a vastly different in scale: the 10th 
element is about a hundred times smaller than the 2nd one, a thousand times smaller than the 8th 
one and ten thousand times smaller than the 4th one.

So what would the TF-IDF measures look like without logarithms? This is the revised formula
(termfreq + 1.0) ( numdocs / docfreq)

Here are the measures for 'tapir', ‘the’ and ‘selection’

(3 + 1.0) ( 15 / 3)

(695 + 1.0) ( 15 / 10141)

(4 + 1.0) ( 15 / 383)

Now a very frequent term (like the stopword ‘the’) has a higher TF-IDF measure than a highly 
relevant, but less frequent term (like the word ‘selection’). This is not the result we want, hence the 
use of Log in our formula. (We used the natural logarithm (base ⅇ) in our code, but the base doesn’t 
matter.)

Computing TF-IDF measures for every word in Chapter 9
We are in a position to compute the TF-IDF measure for all of the terms that Darwin used in Chapter 
9. We can build up a function to do so step-by-step. Let’s start by determining what inputs our 
function will need and what kind of output it will return. In order to compute TF-IDF, we will need a 
list of terms appearing in the chapter. We have already created that for Chapter 9 and assigned it to 
the symbol ch9Terms. We will need a list of term frequencies (got it: ch9TermFreq). And we will 
need a list of document frequencies for terms appearing in Chapter 9 (done: ch9DocFreq). The 
output that we want our function to return will include a list of terms in order of descending TF-IDF 
score. This is what our function looks like so far.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     79



We are in a position to compute the TF-IDF measure for all of the terms that Darwin used in Chapter 
9. We can build up a function to do so step-by-step. Let’s start by determining what inputs our 
function will need and what kind of output it will return. In order to compute TF-IDF, we will need a 
list of terms appearing in the chapter. We have already created that for Chapter 9 and assigned it to 
the symbol ch9Terms. We will need a list of term frequencies (got it: ch9TermFreq). And we will 
need a list of document frequencies for terms appearing in Chapter 9 (done: ch9DocFreq). The 
output that we want our function to return will include a list of terms in order of descending TF-IDF 
score. This is what our function looks like so far.

computeTFIDF[termlist_, tflist_, dflist_] :=
 Module[{outlist, ...},
  outlist = {};
  ...
  Return[outlist]]

For each term in the term list, we want to compute the TF-IDF and Append it to the list we are going 
to output. We can loop through each of the terms with a Do loop.

Do[Print[t * 2], {t, {1, 2, 3}}]

Here is an example of Append in action.

Append[{a, b, c}, z]

Our function now looks like this

computeTFIDF[termlist_, tflist_, dflist_] :=
 Module[{outlist, ...},
  outlist = {};
  Do[
  ...
  outlist=Append[outlist, {t...tfidf[...]}],
   {t,termlist}];
  Return[outlist]]

For each term, we need a way to get its TF and DF so we can calculate its TF-IDF. Setting aside the 
problem of how we are going to do this for a moment, we can make room for it in our function.

computeTFIDF[termlist_, tflist_, dflist_] :=
 Module[{outlist,tf,df},
  outlist = {};
  Do[
  tf=...;
  df=...;
  outlist=Append[outlist, {t,tf,df,tfidf[tf,df,15.0]}],
   {t,termlist}];
  Return[outlist]]

To get the TF and DF for a given term, we will use the Cases command. As we have seen, it takes 
a list and a pattern, and returns each element of the list that matches the pattern.

Cases[{a, b, 123, c, 45, d, e, 67}, _Integer]

Cases[{a, b, 123, c, 45, d, e, 67}, _Symbol]

If we want to use Cases to extract something from a nested list (i.e., a list of lists), we can use a 
named pattern and a rule, as shown below.

Cases[{{a, 123}, {b, 45}, {6, c}, {d, 7}, {89, e}}, {x_, _Integer} → x]

If we only wanted the first element, we could select it with Part.

Cases[{{a, 123}, {b, 45}, {6, c}, {d, 7}, {89, e}}, {x_, _Integer} → x]〚1〛

Since our lists of term frequencies and document frequencies are nested lists, this is the version of 
Cases that we need for the function that we are developing. The final version is 

80     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



computeTFIDF[termlist_, tflist_, dflist_] :=
Module[{outlist, tf, df},
outlist = {};
Do[
tf = Cases[tflist, {t, x_} → x]〚1〛;
df = Cases[dflist, {t, x_} → x]〚1〛;
outlist = Append[outlist, {t, tf, df, tfidf[tf, df, 15.0]}],
{t, termlist}];

Return[outlist]]

Now that we have this function, we can do the computation and save the results.

ch9TFIDF = Sort[computeTFIDF[ch9Terms, ch9TermFreq, ch9DocFreq], #1〚4〛 > #2〚4〛 &];

Looking at the TF-IDF scores
The output of the computeTFIDF function includes a lot of information. For each term there is a list 
consisting of the term, its TF, DF, and TF-IDF. Here are the first ten entries in the TF-IDF list. We 
have used the Grid command to lay everything out in a table, and the Prepend command to add 
headers for each column. The Alignment→Right option tells Mathematica we want the columns to 
be right justified.

Grid[Prepend[ch9TFIDF〚1 ;; 10〛, {"Term", "TF", "DF", "TF-IDF"}], Alignment → Right]

The fifty terms in Chapter 9 with the highest TF-IDF score are listed below. Take a moment to study 
them.

Take[ch9TFIDF, 50]〚All, 1〛

Consulting Wikipedia, WordData and Wolfram Alpha
Note that the highest scoring terms by this measure—such as ‘teleostean’—are nowhere near the 
most frequent terms Darwin uses in Origin. In fact he only uses ‘teleostean’ three times in the whole 
book. But all three times are in Chapter 9. The same is true of ‘tapir’ and ‘pebbles’.

Cases[docFreq, {"teleostean", _}]

kwic[ch9, "teleostean", 3]

Cases[docFreq, {"tapir", _}]

kwic[ch9, "tapir", 3]

Cases[docFreq, {"pebbles", _}]

kwic[ch9, "pebbles", 3]

From the KWIC display we can see that ‘teleostean’ has something to do with fishes. If we are not 
clear on what this term means, we can use the WikipediaData command to look it up.

WikipediaData["teleost", "SummaryPlaintext"]

If we just want the definition of the word ‘teleost’ we can use WordData.

WordData["teleost", "Definitions"]

For more exotic requests, we can call WolframAlpha. The command below, for example, provides 
us with an interactive graph of the frequency history of the word ‘teleost’ over more than 400 years, 
based on a sample of a million English-language volumes from Google Books. The usage of this 
word peaked in the early 1970s.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     81



WolframAlpha["teleost", IncludePods → "BookMatchFrequency:WordData",
AppearanceElements → {"Pods"}, PodStates → {"Hyponym:WordData__More"}]

So what is Chapter 9 of Origin about?
Look again at the high TF-IDF terms from Chapter 9: ‘teleostean’, ‘pebbles’, ‘decay’, ‘conchologists’, 
‘wear’, ‘tear’, ‘mineralogical’, ‘levels’, ‘grinding’, ‘gravel’, ‘sand’, ‘sedimentary’, ‘wears’, ‘wearing’, 
‘watermark’, ‘tidal’ ... The general sense is of geology, water, erosion, and fossils. When we look at 
Darwin’s own summary for the chapter, we can see that this impression is accurate.

StringTake[ch9, 538]

The term frequency-inverse document frequency (TF-IDF) measure gives us one way of determin-
ing whether a particular term plays an important role in a page, chapter or other part of a text. In our 
example we used terms with high TF-IDF to figure out what Chapter 9 of Origin of Species is about. 
When used with a group of documents (a corpus), TF-IDF can help to automatically determine what 
each document is about and whether or not it is relevant to a particular search query.

Programming with Mathematica

Coding texts as vectors
In the document vector model, we want to represent a given text in terms of the presence or 
absence of high-frequency keywords. The simplest implementation is simply to count each pres-
ence as one and each absence as zero, as we did in the ‘Basic Examples’ section above.

The first thing we need to know is which terms that appear on our page are also columns in our 
vector. We can figure that out by using the Intersection command. Here are all the terms from 
originLines〚3〛 which are also in freq200.

Intersection[line3words, freq200]

We need to find the position of each one of those words in the freq200 list, because that is going to 
correspond to its column number in the vector. The term “america” is the 86th column of the vector.

Position[freq200, "america"]

We can write this as a pure function and apply it to the string “america” to get the same result.

Position[freq200, #] &["america"]

If we Map the pure function across our list of words in the intersection, we get all the positions.

Map[Position[freq200, #] &, Intersection[line3words, freq200]]

This information isn’t quite in the most useful format, however. For one thing, we want to pull each 
position out of the nested lists it is in.

First[{{86}}]

First@First[{{86}}]

So now our pure function looks like this, and returns a flat list of positions.

Map[First@First@Position[freq200, #] &, Intersection[line3words, freq200]]

We are going to do one more thing that we will need in a moment. We are going to return a list of 
rules, where each position points to the number one. Compare this expression with the previous one.

MapFirst@First@Position[freq200, #] → 1 &, Intersection[line3words, freq200]

OK, why did we do that? There is a command in Mathematica called ConstantArray which we can 
use to get a list of constant values. Here is how we generate a list of 10 zeros. We are actually 
going to need 200 of them but that is an easy change to make.

82     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



OK, why did we do that? There is a command in Mathematica called ConstantArray which we can 
use to get a list of constant values. Here is how we generate a list of 10 zeros. We are actually 
going to need 200 of them but that is an easy change to make.

ConstantArray[0, {10}]

Say we wanted to change the 3rd and 7th positions from zeros to ones. We can do that with the 
ReplacePart command.

ReplacePart[ConstantArray[0, {10}], {3 → 1, 7 → 1}]

So having gotten our positions into the form of a list of rules, we can use them with ReplacePart and 
ConstantArray to generate our 200-dimensional vector.

ReplacePartConstantArray[0, {200}], Map
First@First@Position[freq200, #] → 1 &, Intersection[line3words, freq200]

At this point, all we need to do is roll everything up into a function. This is the function that appears 
in the example above.

getFreqVector[textstr_, freq_] :=
 ReplacePart[ConstantArray[0, {Length[freq]}], 
   Map[(First@First@Position[freq, #] -> 1) &, 
 Intersection[DeleteStopwords@ToLowerCase@TextWords[textstr], freq]]]

Finding similar vectors
In our ‘Basic Examples’ section we used the vector product (Dot command) to determine how 
similar two vectors are. Here is what the Dot command is calculating when you give it two vectors:

Dot[{a, b, c}, {d, e, f}]

This product can also be written as

{a, b, c}.{d, e, f}

We stored a vector for each line of originLines in originFreq200Vectors. So if we wanted to compute 
the similarity of originLines〚1487〛 and originLines〚3〛 all we had to do was compute this vector 
product:

originFreq200Vectors〚1487〛.originFreq200Vectors〚3〛

Note that we get the same result regardless of the order.

originFreq200Vectors〚3〛.originFreq200Vectors〚1487〛

We can also write this vector product using a pure function which we then apply to another vector to 
get a result. Since we are multiplying the same two vectors here, we get the same result.

originFreq200Vectors〚1487〛.# &[originFreq200Vectors〚3〛]

Now suppose we want to search through a list of items and return the largest value by some mea-
sure. The MaximalBy command does precisely that. Here we are saying that we want to search 
through originFreq200Vectors and multiply each one by originFreq200Vectors〚1487〛. The largest 
value will be returned.

MaximalBy[originFreq200Vectors, originFreq200Vectors〚1487〛.# &]

We could ask it to return the largest two values by adding an argument to the command.

MaximalBy[originFreq200Vectors, originFreq200Vectors〚1487〛.# &, 2]

This is going in the right direction, but it isn’t exactly what we need. What we really want is to return 
the line number in originLines associated with the most similar vector. (Or the line numbers, if we 
are asking for multiple results.)

So we need to pair each vector with its line number. In this chapter we learned we can do this by 
using the Thread and Rule commands.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     83



So we need to pair each vector with its line number. In this chapter we learned we can do this by 
using the Thread and Rule commands.

Thread[Rule[Range[3], {a, b, c}]]

To get a list of each line number paired with its associated vector we will use this expression:

Thread[Rule[Range[Length[originFreq200Vectors]], originFreq200Vectors]]

But now each element in the list we are testing with MaximalBy is not a vector, it is a rule with a 
number pointing to a vector. So we have to modify our pure function so it looks like this:

originFreq200Vectors〚1487〛.#〚2〛 &

If we want to get the top four matches, we have to ask for five of them and throw away the first one. 
(That is because the text vector is maximally similar to itself). Since results are returned in descend-
ing order, we can use the Rest command to take the rest of the result list after we have dropped the 
first element. Here are the four closest matches to originLines〚1487〛.
Rest[MaximalBy[

Thread[Rule[Range[Length[originFreq200Vectors]], originFreq200Vectors]],
originFreq200Vectors〚1487〛.#〚2〛 &, 5]]〚All, 1〛

Now we can roll everything up into the function that was used above in the text.

findSimilarLines[freqvs_, line_, n_] :=
 Rest[MaximalBy[Thread[Rule[Range[Length[freqvs]], freqvs]], freqvs〚line〛.#[[2]] &, n 
+ 1]]〚All, 1〛

Linking an ordered word list to the text string
In Chapter 2 we considered the problem of finding a pair of words near one another in a text. Here 
we consider a related problem. When we work with ordered lists of normalized words (like ch9 or 
originWholeList) we occasionally come across something of interest. We might be looking at n-
grams, using a KWIC display or using pattern matching to search. When this happens we would like 
to consult the original text, since it is easier to read than an ordered list of normalized words. So 
given an ordered word list, it would be nice to have a function that finds and displays that part of the 
text string and some material before and after.

Suppose we see something that piques our curiosity.

{"after", "a", "certain", "unknown", "number", "of", "generations",
"some", "bird", "had", "given", "birth", "to", "a", "woodpecker"}

Our function should take a list like this and return the substring from the whole text string that con-
tains it (origin in our case). We start by turning our ordered word list into a string. If we simply try to 
StringJoin the words in the list, there won’t be any spaces in the resulting string.

StringJoin[{"after", "a", "certain", "unknown", "number", "of", "generations",
"some", "bird", "had", "given", "birth", "to", "a", "woodpecker"}]

Instead we need to use the StringRiffle command which intersperses each word with a space.

StringRiffle[{"after", "a", "certain", "unknown", "number", "of", "generations",
"some", "bird", "had", "given", "birth", "to", "a", "woodpecker"}]

Next we try using StringPosition with the IgnoreCase option set to True.

StringPosition[origin, StringRiffle[
{"after", "a", "certain", "unknown", "number", "of", "generations", "some",
"bird", "had", "given", "birth", "to", "a", "woodpecker"}], IgnoreCase → True]

It doesn’t work, however. The problem is that there must be some punctuation in the original string 
which was lost in the normalization process. The phrase “some bird had given birth” sounds reason-
ably unique and is unlikely to contain any internal punctuation (or diacritics). If we try coverting this 
subset to a string and matching it, we are successful. 

84     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



It doesn’t work, however. The problem is that there must be some punctuation in the original string 
which was lost in the normalization process. The phrase “some bird had given birth” sounds reason-
ably unique and is unlikely to contain any internal punctuation (or diacritics). If we try coverting this 
subset to a string and matching it, we are successful. 

StringPosition[origin,
StringRiffle[{"some", "bird", "had", "given", "birth"}], IgnoreCase → True]

Whenever possible, however, our goal is to let the computer do the work. We shouldn’t have to hunt 
through our list for some subset that is probably going to match. What we want is some way of 
matching our ordered list to a string, allowing for the possibility of deletion of characters (in the case 
of punctuation marks) and mutation (in the case of diacritics).

In fact, Mathematica has a command called LongestCommonSubsequence which finds the 
largest such matching string.

LongestCommonSubsequence[origin, StringRiffle[
{"after", "a", "certain", "unknown", "number", "of", "generations", "some",
"bird", "had", "given", "birth", "to", "a", "woodpecker"}], IgnoreCase → True]

If we use StringPosition to find this, it will return a result.

StringPosition[origin,
LongestCommonSubsequence[origin, StringRiffle[{"after", "a", "certain",

"unknown", "number", "of", "generations", "some", "bird", "had", "given",
"birth", "to", "a", "woodpecker"}], IgnoreCase → True], IgnoreCase → True]

We would like to display the whole match, not just part of it. The length of the whole list we are 
trying to match gives us a window of sorts: we know that all of our words have to be within a certain 
distance from one another. In this case our window is 87 characters.

StringLength[
StringRiffle[{"after", "a", "certain", "unknown", "number", "of", "generations",

"some", "bird", "had", "given", "birth", "to", "a", "woodpecker"}]]

If we take that many characters to either side of the range that StringPosition returns, we will be 
sure to capture all the words in our list and a little bit of context to either side. The function below 
takes a text, an ordered list of words and an integer reflecting how many lines of additional context 
we would like to see, and returns a tabbed display showing the text string that contains the ordered 
list of words.

orderedWordListFind[txt_, wordlist_, lines_] :=
Module{within},
within = 80 * lines + StringLength[StringRiffle[wordlist]];
TabView[Map[StringTake[txt, {#〚1〛 - within, #〚2〛 + within}] &,

StringPosition[txt, LongestCommonSubsequence[txt,
StringRiffle[wordlist], IgnoreCase → True], IgnoreCase → True]]]

Here it is in action

orderedWordListFind[origin,
{"after", "a", "certain", "unknown", "number", "of", "generations",
"some", "bird", "had", "given", "birth", "to", "a", "woodpecker"}, 1]

If you study the code for the function, you will see that we used Map inside of it. In the example 
above, the ordered list of normalized words that we are interested in only appears once in Origin. 
But that is not necessarily going to be the case, as the next example shows.

orderedWordListFind[origin, {"our", "domestic", "productions"}, 2]

Mathematica Commands to Review

◼ BE: Basic Examples, GE: Generalizing the Examples, PM: Programming with Mathematica, FE: 
Further Exploration

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     85



◼ Append (GE)

◼ ConstantArray (BE)

◼ Do (GE)

◼ Dot (BE)

◼ Equal (FE)

◼ FormulaData (BE)

◼ FormulaLookup (BE)

◼ FullForm (BE)

◼ Greater (BE)

◼ Histogram (BE)

◼ Intersection (BE), (PM)

◼ ListLogPlot (GE)

◼ Log (GE)

◼ LongestCommonSubsequence (GE)

◼ MaximalBy (BE)

◼ Take (GE)

◼ Tally (GE)

◼ Thread (BE)

◼ Tooltip (BE)

Exercises

1. Using the WolframAlpha command we were able to generate an interactive graph 
showing the word frequency history of the word ‘teleost’ over more than 400 years, based 
on a million-volume sample from Google Books. In that case, we asked Wolfram Alpha to 
send us formatted pods. We can also request computable data which is designed to be 
subject to further processing in Mathematica. Try retrieving the word frequency history data 
for ‘tapir’ and ‘teleost’ (or any other pair of terms) and plotting them in the same graph. The 
following tutorial may be useful

tutorial/DataFormatsInWolframAlpha

ch06

Chapter 06: Internet Sources

Overview

We have been using a text from Mathematica’s built-in ExampleData to develop facility with some 
basic digital research methods, but almost all sources for a research project will probably come from 
the internet in one form or another. In this chapter we develop methods for retrieving online sources 
(including downloading in bulk), processing webpages, creating indexes and working with files on 
our local machine. We also explore techniques for manually archiving versions of webpages so that 
we can cite them without worrying that they will change in the future.

86     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Basic Examples

URL: Uniform resource locator
If you can visit a site with a web browser, you can write a computer program to automatically 
retrieve information from that website. I should say at the outset, however, that you have to be 
careful not to violate the terms of service of the site in question. Many sites, especially those that 
provide journal articles or other scholarly resources, expressly forbid the use of computer programs 
to harvest or process their resources automatically. Always read the terms of use for the site and 
make sure to ask your university librarian or a company representative if you are in any doubt about 
what you can or cannot do. That said, I have found that many resource providers are quite support-
ive of text mining and other digital research projects and some will go out of their way to provide 
access if you let them know what you would like to do, and why.

When you want to visit a site in your browser, you have to provide a URL (uniform resource locator). 
URLs identify a web resource, tell you where the resource is located and how to access it. They 
have a common format which looks like this
http : // darwin - online.org.uk

The first part of the URL
http

is called the ‘protocol identifier’ or ‘scheme’. It allows you to specify how information is going to be 
exchanged between your computer and the computer which has the resource (the server).  The 
hypertext transfer protocol (HTTP) is the standard protocol for the World Wide Web.

The next part of the URL is the Internet domain. This is a human- and machine-readable name that 
will ultimately be translated into an IP address (more on this below).
darwin - online.org.uk

We can get computable data about domain names, including a list of properties.

darwin-online.org.uk (internet domain)

EntityTypeName darwin-online.org.uk (internet domain) 

EntityProperties["InternetDomain"]

How many monthly visitors does the Darwin Online site receive?

Entity["InternetDomain", "http://darwin-online.org.uk"]["SiteMonthlyVisitors"]

Each device connected to the Internet has an IP address (Internet Protocol) which ultimately indi-
cates where it is. This consists of four numbers, each ranging from 0 to 255, separated by dots. We 
can look up the IP address for the Darwin Online site with the following command.

Entity["InternetDomain", "http://darwin-online.org.uk"]["DNSLookupName"]

IP addresses are tied to particular physical locations, and we can request this information in Mathe-
matica, too. Despite the “uk” top-level domain of this particular address, we can see that the site is 
actually hosted in Ashburn, Virginia in the United States.

EntityTypeName 50.16.190.67 (IP address) 

EntityProperties["IPAddress"]

Entity["IPAddress", "50.16.190.67"]["HostLocation"]

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     87



CityData Ashburn (city) , "Coordinates"

If we wish, we can request more information about the site from Wolfram Alpha.

http://darwin-online.org.uk(

Retrieving information from the web
Mathematica has a variety of commands that allow us to retrieve web pages or elements from them. 
We can use the Import command with the “Elements” property to see what kind of information is 
available for a particular web page.

Import["http://darwin-online.org.uk", "Elements"]

Once we know what elements are available, we can request the one(s) that we want. This com-
mand retrieves only the title of the page, returning a string.

Import["http://darwin-online.org.uk", "Title"]

We can also request the text of a page and a list of links to other pages. These are both very useful 
when we are automatically processing large numbers of websites.

viewData@Import["http://darwin-online.org.uk", "Plaintext"]

viewData@Import["http://darwin-online.org.uk", "Hyperlinks"]

To get the most out of an online resource, we will typically want to retrieve some of the other ele-
ments, especially the source code for the page. These options are discussed in detail below.

Files and directories
Once we have retrieved online information, we usually want to store a copy on our local machine. 
Mathematica provides access to the files and folders of your operating system with a number of 
commands. I am using OS X, so your results may be a bit different on Windows or Linux.

To see the current working directory (i.e., folder), use Directory. My working directory is currently 
set to my OS X home directory.

Directory[]

You can change the directory with SetDirectory. Here I am changing my working directory to my 
Downloads folder. Everywhere in the text that I use a file path like /Users/wjt/Downloads/ you should 
substitute an appropriate path on your own system.

SetDirectory["/Users/wjt/Downloads/"]

Directory[]

To get a list of files in the directory, use FileNames. (In OS X and Linux, which are both based on 
the Unix operating system, a directory can contain hidden dotfiles. These have names beginning 
with a dot, and do not usually appear when you view the directory with a file viewer like Finder.)

FileNames[]

Optionally, you can include a pattern which limits the listing to matching file names. This shows me 
the PDF files in my Downloads folder.

FileNames["*.pdf"]

You can test to see if a directory or file already exists.

FileExistsQ["expressionemoti01darwgoog.pdf"]

88     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



DirectoryQ["/Users/wjt/Downloads/"]

If a directory does not exist, you can create it.

If[Not[DirectoryQ["/Users/wjt/Downloads/temp"]],
CreateDirectory["/Users/wjt/Downloads/temp"]]

Now when we check the directory listing, we see that temp has been created.

FileNames[]

We can delete the directory if we no longer need it.

DeleteDirectory["/Users/wjt/Downloads/temp"]

Downloading a text file
One of the most basic digital research tasks is to retrieve an online resource and save a local copy. 
Suppose we want a copy of Vestiges of the Natural History of Creation, written by Robert Chambers 
and published anonymously in 1844. We find a Project Gutenberg e-text at the Internet Archive.

https://archive.org/details/vestigesofthenat07116gut

Project Gutenberg books are nice for digital reseach because they are raw text (ASCII) files that 
have been typed in by a human being. As such they tend to contain fewer errors than texts that 
were created by optical character recognition and the file format is easier to handle than PDF (both 
of these other options are discussed in later chapters).

We can download the resource directly to our local machine. To get a file from the Internet Archive 
you have to provide a different URL than the one you visit in your web browser, and you have to 
know the name of the text file that you want. The download URL begins like this
https : // archive.org / download /

(The HTTPS scheme is a secure version of HTTP.) You need to add a path to the resource that you 
want. If it helps, you can think of this like specifying a directory on the server. The part of the path 
that is specific to this particular resource at the Internet Archive, vestigesofthenat07116gut, is called 
its identifier.
https : // archive.org / download / vestigesofthenat07116gut /

We know the identifier, but we don’t yet know what the name of the file is. So we will use the Import 
command to get all the hyperlinks on the page and Select to retrieve the one that contains a .txt file 
extension.

Select[Import["https://archive.org/download/vestigesofthenat07116gut/",
"Hyperlinks"], StringContainsQ[#, ".txt"] &]

Now that we know what the file name is, we can use URLSave to save a copy of the file directly to 
our own computer. The FileNameJoin command adds a path to the name of the local file that we 
are creating. Instead of using the somewhat cryptic filename from the Internet Archive, I am going to 
use the more explicit directory name as my file name. I am also going to be explicit about which 
directory I want to put it in, even though that is my current working directory. There is less chance of 
error that way.

URLSave["https://archive.org/download/vestigesofthenat07116gut/vstc10.txt",
FileNameJoin[{"/Users/wjt/Downloads/", "vestigesofthenat07116gut.txt"}]]

I can now check to make sure the file is there 

FileNames["*.txt", "/Users/wjt/Downloads/"]

Using the Import command we can load the contents of the file into memory and assign it to a 
symbol. Using Short we can see that the file has some header information before the text begins, 
and some footer information after it ends.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     89



Using the Import command we can load the contents of the file into memory and assign it to a 
symbol. Using Short we can see that the file has some header information before the text begins, 
and some footer information after it ends.

vestigesFull = Import["/Users/wjt/Downloads/vestigesofthenat07116gut.txt"];

Head[vestigesFull]

StringLength[vestigesFull]

Short[vestigesFull, 6]

Before we analyze the text in any way, we need to clip off the header and footer. Most Project 
Gutenberg texts have lines indicating the beginning and ending of the text proper with three aster-
isks. If we Map the StringTake command over the text, we can see these two lines. The StringPosi-
tion command shows us where in the text those lines are.

StringTake[vestigesFull, #] & /@
StringPosition[vestigesFull, Shortest["*** " ~~ "START" "END" ~~ __ ~~ " ***"]]

StringPosition[vestigesFull, Shortest["*** " ~~ "START" "END" ~~ __ ~~ " ***"]]

The StringDrop command lets us delete ranges of characters from a string. Here we use it twice, to 
delete the header and footer. Note that we need to calculate how many characters to trim off the 
end.

StringLength[vestigesFull] - 476729 + 1

vestigesTrimmed = StringDrop[StringDrop[vestigesFull, -13342], 1280];

Short[vestigesTrimmed, 10]

Comparing high frequency words of Vestiges and Origin
Now that we have the text of Vestiges, we can do the same kinds of textual analysis we did with 
Origin. We can determine the most frequently occuring words, for example. Not surprisingly, they 
are stopwords.  Some of the least frequent terms appear to be (and are) very large numbers, from 
an interesting discussion of Babbage’s algorithmic view of the geological record.

vestigesWordFreqs = WordCounts[vestigesTrimmed, IgnoreCase → True];

Short[vestigesWordFreqs, 10]

We can also compare the high frequency terms in Vestiges with those in Origin. The following 
function plots two columns with arrows joining terms that appear in both. Its workings are explained 
in the ‘Programming with Mathematica’ section below.

90     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



listMatchGraph[left_, right_, lbl_] :=
Module{idxl, idxr, leftidx, rightidx, lself, rself, lcoords, rcoords, gr},
idxl = ToString /@ Range[Length[left]];
idxr = ToString /@ Range[Length[right]];
leftidx = StringRiffle /@ Thread[List[idxl, left]];
rightidx = StringRiffle /@ Thread[List[idxr, StringJoin[#, " "] & /@ right]];
lself = Thread[Rule[leftidx, leftidx]];
rself = Thread[Rule[rightidx, rightidx]];
lcoords = Thread[Rule[leftidx, Map[{-8, #} &, -Range[Length[leftidx]]]]];
rcoords =
Thread[Rule[rightidx, Map[{8, #} &, -Range[Length[rightidx]]]]];

gr = DeleteCasesThread
Ruleleftidx, rightidxFirst@First@Position[right, #] /. {} → {{0}} & /@

left, _ → List;
Show[GraphPlot[Join[lself, rself, gr], VertexLabeling → True,

VertexCoordinateRules → Join[lcoords, rcoords], SelfLoopStyle → None,
EdgeRenderingFunction → ({Gray, Arrow[#1 + {{1.6, 0}, {-1.6, 0}}]} & ),
VertexRenderingFunction → ({Black, Text[#2, #1]} &),
ImageSize → Large], PlotLabel → lbl, LabelStyle → {12}]

The most frequently occuring terms in each book (not including stopwords) are plotted in order of 
decreasing frequency.

listMatchGraph[DeleteStopwords@Keys[vestigesWordFreqs]〚1 ;; 130〛,
DeleteStopwords@Keys[originWordFreqs]〚1 ;; 136〛,
"Vestiges vs. Origin\nHigh Frequency Terms"]

Looking at this figure, we can see, for example, that although both books are about species, Cham-
bers focuses more on time and animals and Darwin more on forms and varieties. The idea of natu-
ral selection, which plays such an important role in Origin, is not to be found in Vestiges.

Batch downloading files
Since we can write code to download a single file directly to our local machine, nothing prevents us 
from automatically downloading files in bulk. As an example, we will download the works of Huxley 
that appear in the Project Gutenberg collection of the Internet Archive.

The Internet Archive has an advanced search page at the following URL. The .php file extension 
tells us that this page is written in the server scripting language PHP. Such pages often have 
dynamic content, that is, they are updated every time that someone requests the page. If you visit 
this page in a web browser, you can fill out a number of fields indicating the title, creator, collection, 
date range or other information you are interested in. When you submit your query, the system will 
respond with matching texts, images, movies, audio files, or whatever.
http : // archive.org / advancedsearch.php

We can also use the Mathematica URLBuild command to enter our query directly as a URL. The 
following example requests all of the materials in the Project Gutenberg collection that were created 
by Thomas Henry Huxley. The only field that we are interested in is the identifier. We ask for 50 
rows of information beginning with the first page. (If we need to request more information we can 
make subsequent calls for “page”→2, “page”→3, and so on). We ask that the output be returned as 
comma separated values (CSV).

URLBuild[{"http://archive.org/", "advancedsearch.php"},
{"q" → "creator:\"Huxley, Thomas Henry, 1825-1895\" AND collection:Gutenberg",
"fl[]" → "identifier", "rows" → 50, "page" → 1, "output" → "csv"}]

The above command does nothing but create the URL corresponding to the search that we want, 
however. In order to actually get the information we use the URLFetch command. What is returned 
is one long string, so we use StringSplit to break the results into a list. Each identifier has a quota-
tion mark character at the beginning and end which we remove with StringTrim. The first element 
that is returned is simply the word “identifier” and we don’t need that, so we get rid of it with Rest.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     91



The above command does nothing but create the URL corresponding to the search that we want, 
however. In order to actually get the information we use the URLFetch command. What is returned 
is one long string, so we use StringSplit to break the results into a list. Each identifier has a quota-
tion mark character at the beginning and end which we remove with StringTrim. The first element 
that is returned is simply the word “identifier” and we don’t need that, so we get rid of it with Rest.

huxleyGutenbergIAIdentifiers =
Rest@StringTrim[StringSplit[URLFetch@URLBuild[{"http://archive.org/",

"advancedsearch.php"}, {"q" → "creator:\"Huxley, Thomas
Henry, 1825-1895\" AND collection:Gutenberg",

"fl[]" → "identifier", "rows" → 50, "page" → 1, "output" → "csv"}]], "\""]

Since there are 47 identifiers and we asked for a maximum of 50, we know we don’t need to request 
any more pages of results.

Length[huxleyGutenbergIAIdentifiers]

Before we request the actual files, we are going to need a place to put them. I check to see if a 
directory exists on my machine, and create it if not.

If[Not[DirectoryQ["/Users/wjt/Downloads/huxley"]],
CreateDirectory["/Users/wjt/Downloads/huxley"]]

Now we need a function that downloads a file to our directory, given an Internet Archive identifier 
and the name of the directory where we want to put it. This function also lets us specify that we only 
want files with a particular extension (.txt in this case). The code is a generalization of the method 
that we used above to download Vestiges. Note that we check to make sure that the file hasn’t 
already been downloaded, so we avoid doing unnecessary work.

downloadIAFile[idstr_, dirstr_, ext_] :=
Module[{baseurl, target, fname},
Pause[2];
baseurl = "https://archive.org/download/";
target = FileNameJoin[{dirstr, idstr <> ext}];
If[FileExistsQ[target],
PrintTemporary["File " <> target <> " was already downloaded"],
PrintTemporary["Downloading " <> target];
fname =
Select[StringCases[URLFetch[baseurl <> idstr, "Content"],

Shortest["href=\"" ~~ x__ ~~ "\""] → x], StringContainsQ[#, ext] &];
If[fname ≠ {},
URLSave[baseurl <> idstr <> "/" <> First@fname, target],
PrintTemporary["No text file for " <> target]]]]

The Pause command causes Mathematica to wait for two seconds. The reason that we are doing 
this is because we are going to make a number of requests to the Internet Archive servers, and it is 
polite not to ask for things too quickly. When a person visits a web page it usually takes them at 
least a few seconds to follow a link to the next page. When a computer program visits a site, you 
don’t want it to request dozens of pages within a few milliseconds of one another. The PrintTempo-
rary command gives us some feedback while the download is in progress. When the download is 
complete, the messages will be deleted from the notebook.

Let's try requesting a single file. We can just choose the first one from our list of identifiers.

First[huxleyGutenbergIAIdentifiers]

downloadIAFile["hasisadrasadvent02633gut",
"/Users/wjt/Downloads/huxley", ".txt"]

We check to make sure the file appeared in the proper directory.

SetDirectory["/Users/wjt/Downloads/huxley"];
FileNames["*.txt"]

Since that worked, we can now download all of the Huxley files from the Gutenberg collection by 
mapping our download function across our list of identifiers. We have about fifty files to download 
and each takes at least a few seconds so this job will take a few minutes.

92     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Since that worked, we can now download all of the Huxley files from the Gutenberg collection by 
mapping our download function across our list of identifiers. We have about fifty files to download 
and each takes at least a few seconds so this job will take a few minutes.

Map[downloadIAFile[#, "/Users/wjt/Downloads/huxley", ".txt"] &,
huxleyGutenbergIAIdentifiers];

Indexing a set of files for basic searching
Now that we have downloaded all of the files, we would like to be able to search for information 
across the whole group. In order to do this, we need to know whether or not a particular term 
appears in a particular file, and if so, where. We are going to build an index, a data structure to keep 
track of which terms appear in which files. For each term and each file, we need to know the word 
position(s) where that term occurs.

To make the job easier, we start by creating an association of texts. This takes a minute or so. Note 
that the code tests to see whether there is a file called huxleyTexts.assoc.txt. The first time you run 
the code that file will not exist. When the association is created, however, the Put command is used 
to store a copy of the association to the folder where the Huxley texts are located. If you were to quit 
Mathematica and then start it up and rerun the code, it would discover that the huxleyTexts.as-
soc.txt file exists and load the association using the Get command rather than trying to recreate it 
from scratch. Using Put and Get to store the results of computations can save you a lot of time.

SetDirectory["/Users/wjt/Downloads/huxley"];
If[FileExistsQ["huxleyTexts.assoc.txt"],

huxleyTexts = Get["huxleyTexts.assoc.txt"],
huxleyTexts =
Association[Map[# → ToLowerCase@TextWords@Import@# &, FileNames["*.txt"]]];

Put[huxleyTexts, "huxleyTexts.assoc.txt"]];

Number of texts

Length@huxleyTexts

Number of words in each text

Length /@ Values@huxleyTexts

Total number of words

Total[Length /@ Values@huxleyTexts]

Note that we did not trim off the Project Gutenberg headers and footers, so they are inflating our 
word count a bit, and they will be searchable in our index. We are unlikely to confuse Huxley’s own 
words with the boilerplate, as long as we don’t do anything like try to compute word frequencies 
from our index. If necessary, we could go back and process each file to get rid of the headers and 
footers, as we did with the trimmed version of Vestiges.

Each entry in the huxleyTexts association looks like this
filename → {each, word, in, the, text, is, listed, in, order ...}

The next function takes the association of texts that we just created, and the name of a file, and it 
creates an index for that file.

indexWords[fileassoc_, filename_] :=
ReplaceAllGroupBy[

Select[Thread[List[fileassoc[filename], Range@Length[fileassoc[filename]]]],
nonStopwordQ[#〚1〛] &], First → Last], x_List → filename → x

Let’s try running it on one of the files so we can see what kind of output it creates. We can see that 
the word ‘grapes’ appears once in this text, at the 7280th word position. The word ‘sons’ appears 
twice in this text. Each entry is of the form

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     93



term → filename → {position1, position2, ...}

We can see that the phrase ‘Project Gutenberg’ appears a number of times both at the beginning of 
the file (e.g., in word positions 2 and 3) and at the end (in word positions 7284 and 7285).

Short[indexWords[huxleyTexts, "thedarwinianhypo02927gut.txt"], 30]

We need to keep track of the filenames because we are going to Merge all of our separate file 
indexes into one large one. The code which builds the combined index for all of the files is shown 
below. Once again, we are testing to see if the index was already created, so we can Get it rather 
than rebuild it. (This isn’t always what you want to do. If you change any of the files that you are 
indexing, or add new ones to the directory, you need to rebuild your index. A more complete strat-
egy would be to check the file modification timestamps and make sure that none are more recent 
than the timestamp for the index. We won’t worry about that refinement right now, however.)

SetDirectory["/Users/wjt/Downloads/huxley"];
If[FileExistsQ["huxleyIndex.assoc.txt"],

huxleyIndex = Get["huxleyIndex.assoc.txt"],
huxleyIndex = Merge[Map[indexWords[huxleyTexts, FileNameJoin[{# <> ".txt"}]] &,

huxleyGutenbergIAIdentifiers], Identity];
Put[huxleyIndex, "huxleyIndex.assoc.txt"]];

We can now look up a word in the index like this

huxleyIndex["agnostic"]

The information will be more useful to us if we can see each use of the word in context, so we turn 
to that next.

Search terms in context
Given a filename and a word position, we can look up the context in the huxleyTexts association.

searchTermContext[textassoc_, wordpos_, filename_] :=
textassoc[filename]〚wordpos - 3 ;; wordpos + 3〛

searchTermContext[huxleyTexts, 3437, "collectedessaysv15905gut.txt"]

The function below applies searchTermContext to every match and displays the results in a scrol-
lable window. It is explained in the ‘Programming with Mathematica’ section below. On the righthand 
side of each row, the name of the file and the word position for the search term are shown in green 
text in curly braces.

displaySearch[textassoc_, indexassoc_, term_] :=
Module[{results},
results =
Flatten[
Thread[List[Values@huxleyIndex[term]〚#〛, Keys@huxleyIndex[term]〚#〛]] & /@
Range[Length[Keys@huxleyIndex[term]]], 1];

Framed[Pane[Style[TableForm[Append[searchTermContext[textassoc, #〚1〛, #〚2〛],
Style[{#〚2〛, #〚1〛}, Darker@Green]] & /@ results],

Small], {Full, 200}, Scrollbars → True]]
]

displaySearch[huxleyTexts, huxleyIndex, "agnostic"]

Summary
Any online resource that can be retrieved with a web browser can be accessed with computer 
programs, and processing of large numbers of digital sources can be readily automated (although 
the terms of use on some sites prohibit you from doing so). Once you have retrieved a large batch 
of files and stored them locally, you want to have some way of searching them. Creating a simple 
text index is one possibility, but by no means the only one. We will explore some other options 
below. We will also look in more detail at the way that text sources are marked up for presentation 
online.

94     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Any online resource that can be retrieved with a web browser can be accessed with computer 
programs, and processing of large numbers of digital sources can be readily automated (although 
the terms of use on some sites prohibit you from doing so). Once you have retrieved a large batch 
of files and stored them locally, you want to have some way of searching them. Creating a simple 
text index is one possibility, but by no means the only one. We will explore some other options 
below. We will also look in more detail at the way that text sources are marked up for presentation 
online.

Generalizing the Examples

Markup languages: HTML
When information is presented online, the content provider needs some way of indicating how 
different elements are supposed to look, how they are related to one another, and, at least to some 
extent, what they mean. All of this metadata can be provided in the form of tags which are added to 
a text file. The process of adding such information is called ‘marking up’ a file, hence ‘markup 
languages’. This is easier to understand once you play with it a bit, so we will work through a few 
simple examples using the EmbeddedHTML command.

In the Hypertext Markup Language (HTML) you can indicate that some text is to be emphasized 
with the em tag. Emphasized text is usually rendered with italic font.

EmbeddedHTML["This <em>italicized</em> word is in italics"]

The EmbeddedHTML command takes an HTML string and creates a button. When you click on the 
button above in your Mathematica notebook, it opens the string in your default web browser. There 
you should see the text with the word ‘italicized’ in italics.

Tags that are used to indicate a span of material have a beginning tag (like <em>) and an ending 
tag (like </em>). The paragraph tag works in a similar fashion to the emphasis tag.

EmbeddedHTML["<p>This the <em>first</em>
paragraph.</p><p>This the <em>second</em> paragraph.</p>"]

Note that tags have to be properly nested. That means that the following is OK
< outer > < inner > ... < / inner > < / outer >

But that this is not OK
< outer > < inner > ... < / outer > < / inner >

Some tags are used in a single location. The line break tag is an example. Note that the syntax for 
these kind of tags looks like <br/>. Compare this example with the previous one.

EmbeddedHTML["<p>This the <br/><em>first</em>
paragraph.</p><p>This the <br/><em>second</em> paragraph.</p>"]

A string that begins with an ampersand and ends with a semicolon represents a special character in 
HTML. Suppose, for example, that you want to put a left angle bracket on your page. Since that 
character is used in every tag, you need to have some way of telling the web browser that you are 
mentioning the character rather than using it to define a tag. In HTML, you can represent a left angle 
bracket with &lt; (the ‘lt’ stands for ‘less than’). Likewise, if you need to mention an ampersand you 
can do so with &amp; as shown in the example below. The strong tag is usually rendered as 
boldface.

EmbeddedHTML["It is <strong>true</strong> that 4&lt;8 &amp; 4&gt;2."]

Sometimes special characters are represented with HTML character codes. These begin with an 
ampersand and end with a semicolon. In the middle they have a number sign (#) followed by an 
integer. Below we will see an example that uses the code &#8216; to stand for a left single quota-
tion mark and &#8217; to stand for a right single quotation mark. It also uses the code &#8211; to 
represent what is called an en dash, a dash that is the width of the lowercase letter n. It is wider 
than a hyphen and narrower than an em dash, which is the width of an uppercase M.) You can use 
the FromCharacterCode command to discover what symbol is being represented.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     95



Sometimes special characters are represented with HTML character codes. These begin with an 
ampersand and end with a semicolon. In the middle they have a number sign (#) followed by an 
integer. Below we will see an example that uses the code &#8216; to stand for a left single quota-
tion mark and &#8217; to stand for a right single quotation mark. It also uses the code &#8211; to 
represent what is called an en dash, a dash that is the width of the lowercase letter n. It is wider 
than a hyphen and narrower than an em dash, which is the width of an uppercase M.) You can use 
the FromCharacterCode command to discover what symbol is being represented.

FromCharacterCode[{8216, 8217, 8211}]

You can also convert a string containing an HTML character code into an integer with StringDelete 
and ToExpression, then use that to look up the character code.

ToExpression[StringDelete["&#8216;", Except[DigitCharacter]]]

FromCharacterCode@
ToExpression[StringDelete["&#8216;", Except[DigitCharacter]]]

The example strings that we have been looking at are HTML fragments. A minimal HTML page 
needs to include a number of other tags that indicate what kind of document it is, where the HTML 
begins and ends, a head section that includes the title and other metadata, and a body section that 
includes the visible body of the page. Here is a more complete HTML page.

EmbeddedHTML["<!DOCTYPE html>
<html>

<head>
<title>This is a title</title>

</head>
<body>

<p>Hello world!</p>
</body>

</html>"]

One of the most useful HTML tags is the anchor tag, which is used to create a hyperlink. Suppose 
that we want to create a link to the URL http://www.darwinproject.ac.uk and we want to label the link 
“Darwin Correspondence Project”. Then the HTML for the hyperlink looks like this
< a href =
"http://www.darwinproject.ac.uk" > Darwin Correspondence Project < / a >

The part inside the tag that looks like href=“URL” is called an attribute. Attributes are typically pairs 
of names and values, and are used to provide more information.

Since we are putting our HTML inside a string to test it with the EmbeddedHTML command, we 
have to escape the interior quotation marks by putting backslashes in front of them. This is another 
example of mentioning something rather than using it. We don’t want Mathematica to interpret the 
inside pair of quotation marks as beginning and ending a string.

EmbeddedHTML["<a href=\"http://www.darwinproject.ac.uk\">Darwin
Correspondence Project</a>"]

When you visit a web page with a browser you see the rendered page rather than the HTML (and 
other web technologies) that lay behind it. But most browsers also allow you to view the page 
source, so you can see how the web developer(s) accomplished a particular effect. Studying the 
page source also allows you to write programs that extract information from web pages, a process 
known as scraping. We will explore some examples below.

Manually archiving a web page in the Wayback Machine
Before we do any scraping, however, I want to save a copy of a web page in the Internet Archive’s 
Wayback Machine. This site allows you to explore the way that particular web pages looked in the 
past. (At least approximately; we will defer a more detailed explanation of web archives for the time 
being.) The Internet Archive automatically archives web sites at regular intervals, but if you have a 
URL that you want added to the Wayback Machine at at particular time, you can go to the following 
page and paste the URL that you want to archive in the box under “Save Page Now.”

https://archive.org/web/

96     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



On July 15, 2015, I saved a copy of this page

http://www.darwinproject.ac.uk

The archived page is at

https://web.archive.org/web/20150715195311/http://www.darwinproject.ac.uk

By using the archived page for our example (rather than the live page) we can be sure that the 
example will continue to work as long as we want it to. Note that other pages that are linked from an 
archived page will not be automatically archived.

HTML Page source
We have seen that we can use the Import command to request the title, hyperlinks and plaintext 
from a web page. We can also request the HTML source. If you are not already familiar with HTML, 
spend a few minutes looking at the source for the Darwin Correspondence Project homepage as it 
appeared on July 15, 2015. Notice that some of the tags are already familiar: !DOCTYPE, html, 
head, title, body, a and em. This particular page also uses the web scripting language JavaScript, 
Cascading Style Sheets (CSS) for formatting, some layout tags like div and span, and many other 
elements.

Import[
"https://web.archive.org/web/20150715195311/http://www.darwinproject.ac.uk",
"Elements"]

darwinCorrespondenceProjectNews = Import[
"https://web.archive.org/web/20150715195311/http://www.darwinproject.ac.uk",
"Source"];

viewData@darwinCorrespondenceProjectNews

If your goal is simply to extract information from the page, you often don’t need to understand how 
the whole thing is formatted. You simply need to identify the tags that appear in the immediate 
vicinity of the information you want to grab, and use those to define a pattern.

An interactive pattern matching tool
We can take advantage of Mathematica’s Manipulate command to develop a tool that allows us to 
interactively define patterns for scraping marked-up files. The pattern matching tool has a window 
where we can type a pattern and hit the 1 key to submit it. Underneath are two more windows. 
The top one shows the HTML source with the matched parts in bold. The bottom one shows the 
information that would be extracted if we used that pattern. The code is explained in the 
‘Programming with Mathematica‘ section below.

characterPositionComplement[len_, plist_] :=
SelectThreadJoinPrependPart[#, 2] & /@ plist + 1, 1,

AppendPart[#, 1] & /@ plist - 1, len, #〚1〛 ≤ #〚2〛 &

highlightCharacterPositions[str_, plist_] :=
Module[{len = StringLength[str], graylist, boldlist},
boldlist = Thread[Join[{plist, Bold}]];
graylist = Thread[Join[{characterPositionComplement[len, plist], Gray}]];
Return[Row[

Style[StringTake[str, First[#]], #〚2〛] & /@ Sort[Join[boldlist, graylist]]]]]

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     97



patternMatchTool[src_] :=
Manipulate[
Module[{pos},
pos = StringPosition[src, p];
Column[{Pane[highlightCharacterPositions[src, pos], Scrollbars → True,

ImageSize → {Full, 200}], Pane[Column[StringTake[src, pos]],
Scrollbars → True, ImageSize → {Full, 200}]}]],

{p, "title", InputField[#, FieldSize → {60, 3}, BaseStyle → 12] &}]

The tool is set up to match the default pattern “title”. Note how the title tags and attributes are 
highlighted in the source code. Try entering each of these other patterns to get a feel for how the 
tool works.

This pattern matches all of the Cascading Style Sheet (CSS) files used by the page:

WordBoundary~~WordCharacter..~~".css"

This pattern shows us material that has been formatted with HTML comment tags. Note that the last 
comment was added by the Internet Archive when the page was saved (as were some of the other 
comments).

Shortest["<!--"~~__~~"-->"]

This pattern scrapes out the paragraph that describes the website:

Shortest["<section class=\"site_description\">"~~__~~"</section>"]

This pattern shows us the menu entries under “Themes”.

Shortest["id=\"menu-themes-"~~__~~"\""]

This pattern shows us all of the parts of the page that contain items used for navigating the site:

Shortest["<div class=\"nav-item-container\">"~~__~~"</div>"]

And this pattern scrapes the links and titles of the news items:

Shortest["<h2 class=\"news_item_title\">"~~__~~"</h2>"]

patternMatchTool[darwinCorrespondenceProjectNews]

Scraping information from a web page
Now suppose we want to pull out the titles of the news items from this page. We can use the last 
pattern from above as follows:

StringCases[darwinCorrespondenceProjectNews,
Shortest["<h2 class=\"news_item_title\">" ~~ titles__ ~~ "</h2>"] → titles]

If we only want the labels from the hyperlinks, we can modify the pattern as shown below. (We have 
added stuff to the pattern to match the anchor tags).
Shortest[
"<h2 class=\"news_item_title\"><a " ~~ __ ~~ ">" ~~ __ ~~ "</a></h2>"]

Then the StringCases command becomes

StringCases[darwinCorrespondenceProjectNews,
Shortest["<h2 class=\"news_item_title\"><a " ~~ __ ~~

">" ~~ titles__ ~~ "</a></h2>"] → titles] // TableForm

Suppose we want to scrape the date that each news item was posted, too. We modify the pattern to 
capture still more material.

98     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Suppose we want to scrape the date that each news item was posted, too. We modify the pattern to 
capture still more material.

StringCases[darwinCorrespondenceProjectNews, Shortest[
"<h2 class=\"news_item_title\"><a " ~~ __ ~~ ">" ~~ titles__ ~~ "</a></h2>" ~~
__ ~~ "Posted on " ~~ dates__ ~~ " in"] → {titles, dates}] // TableForm

Once you get the hang of it, scraping can be remarkably quick and powerful. One drawback, how-
ever, is that scraping is also very brittle. Often the content provider need only make a single change 
to their website to inadvertently break your scraper. This isn’t a problem if you only need to scrape 
the page once, or once in a while. Just archive a copy in the Wayback Machine and scrape the 
archived copy. If you scrape a site frequently you will find that you need to revise your scrapers from 
time to time.

Markup languages: XML
Unlike HTML, which uses a limited set of predefined tags to indicate how data should be rendered 
or displayed, the Extensible Markup Language (XML) uses tags to describe data. There are many 
standards for representing various kinds of metadata with XML, but users are also free to define 
their own tags. This flexibility, and the fact that XML is both human- and machine-readible, makes it 
a very powerful way to represent textual and numeric information.

So that we have a short piece of XML to look at, I am going to request information about a biogra-
phy of Darwin written by Adrian J. Desmond and James R. Moore. To do this, I am using a web 
service created by the Online Computer Library Center (OCLC) called Classify. If you send the book 
ISBN in a URL to OCLC Classify, the system will respond with a file of bibliographic information 
marked up with XML. In order to see the raw XML, I am converting it to a string before passing it off 
to viewData.

Import[
"http://classify.oclc.org/classify2/Classify?isbn=0393311503&summary=true",
"Elements"]

biographyXMLstring = StringRiffle[Flatten[Import[
"http://classify.oclc.org/classify2/Classify?isbn=0393311503&summary=true

", "Data"]], "\n"];

viewData@biographyXMLstring

If you aren’t already familiar with XML, spend a few moments looking at the file. Note that it begins 
with a tag that indicates that the file is marked up with XML, ?xml. The work tag contains information 
about the book, mostly stored in attributes like author, editions, format and title. The author and 
authors tags contain information about the authors, some of it redundant. The lc and viaf attributes 
of the author tag hold Library of Congress and OCLC identifiers, respectively. We will make use of 
these later. The ddc tag contains Dewey Decimal call numbers (576.82092). You would use these to 
look for a copy of the book in most North American public libraries. The lcc tag contains Library of 
Congress call numbers (QH31.D2) which indicate where the book would be filed in most North 
American academic libraries.

Just as with HTML, we can extract information by using patterns to scrape the XML string. Here is 
how we would pull out the author names, birth years, LC and VIAF identifiers.

StringCases[biographyXMLstring,
Shortest["<author lc=" ~~ lc__ ~~ "viaf=" ~~ viaf__ ~~ ">" ~~ lname__ ~~ "\n" ~~

fname__ ~~ Longest[byear : DigitCharacter ..] ~~ a__ ~~ "</author>"] →
{lname, fname, "b.", byear, "LC", lc, "VIAF", viaf}] // TableForm

Symbolic XML
Rather than scraping XML, it sometimes makes more sense to parse it, to break it down in a system-
atic way. When you import XML into Mathematica it is converted to a form called ‘symbolic XML’, 
which is native to the Mathematica language. In symbolic XML, the whole file is represented by an 
XMLObject, and each tag by an XMLElement.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     99



Rather than scraping XML, it sometimes makes more sense to parse it, to break it down in a system-
atic way. When you import XML into Mathematica it is converted to a form called ‘symbolic XML’, 
which is native to the Mathematica language. In symbolic XML, the whole file is represented by an 
XMLObject, and each tag by an XMLElement.
A regular XML expression like
< tag attribute = "value" > data < / tag >

Is converted to a symbolic XML expression of the form
XMLElement["tag", {"attribute" → "value"}, {"data"}]

Here is the record for Desmond and Moore’s Darwin biography, represented in symbolic XML.

biographySymbolicXML = Import[
"http://classify.oclc.org/classify2/Classify?isbn=0393311503&summary=true",
"XML"]

Symbolic XML takes a bit of getting used to, but it is actually pretty easy to extract the information 
that you want. Suppose you want to pull out the same information that we scraped above. Go into 
the above output and copy a sample XMLElement, then paste it into the notebook:

XMLElement["author", {"lc" → "n78041786", "viaf" → "93867795"},
{"Moore, James R. 1947- [Author]"}]

We are going to use this XMLElement as the basis for a pattern that can extract all author details 
from the XML. Wrap the expression in a Cases command. (We need to include Infinity as the level 
specification for our command because the information is nested deeply in the XMLObject).

Cases[biographySymbolicXML,
XMLElement["author", {"lc" → "n78041786", "viaf" → "93867795"},
{"Moore, James R. 1947- [Author]"}], Infinity]

Next we have to replace each piece of specific information with a named pattern. That way, instead 
of matching only the record for James Moore, our Cases statement will match all authors.

Cases[biographySymbolicXML,
XMLElement["author", {"lc" → lc_, "viaf" → viaf_}, {a_}] →
{a, "LC", lc, "VIAF", viaf}, Infinity] // TableForm

Here are a few more examples of pulling information from symbolic XML. The title of the work

Cases[biographySymbolicXML,
XMLElement["work", {__, "title" → title_}, {__}] → title, Infinity]

The number of editions

Cases[biographySymbolicXML,
XMLElement["work", {__, "editions" → eds_, __}, {__}] → eds, Infinity]

The most frequently used Library of Congress call number

Cases[biographySymbolicXML, XMLElement["lcc", {},
{XMLElement["mostPopular", {__, "sfa" → lcc_}, {}], __}] → lcc, Infinity]

RSS Feeds
One case where XML parsing is very handy is in dealing with RSS feeds. RSS (Really Simple 
Syndication) is an XML format for storing information about frequently changed information on a 
website. A blog, for example, will typically have an RSS feed that you can subscribe to using a feed 
reader. When you check your feed reader, it contacts the site, checks to see if there is a blog post 
that you haven’t read, and, if so, downloads some information about that post. Many news sites, too, 
use RSS feeds for new stories; libraries often use them to advertise books that have recently been 
purchased; retailers use them for new product information, and so on.

The New York Times has RSS feeds for a variety of topics that are covered frequently in the newspa-
per. On July 15, 2015, I archived a copy of their RSS feed for Darwin to the Wayback Machine.

100     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



The New York Times has RSS feeds for a variety of topics that are covered frequently in the newspa-
per. On July 15, 2015, I archived a copy of their RSS feed for Darwin to the Wayback Machine.

The Darwin RSS feed link is

http://topics.nytimes.com/top/reference/timestopics/people/d/charles_robert_darwin/ind
ex.html?rss=1

and the link in the Wayback Machine is

https://web.archive.org/web/20150715200540/http://topics.nytimes.com/top/reference/tim
estopics/people/d/charles_robert_darwin/index.html?rss=1

We can use this link to explore some of the things we can do with RSS. The Import command, for 
example, shows us which elements we can request.

Import[
"https://web.archive.org/web/20150715200540/http://topics.nytimes.com/top/

reference/timestopics/people/d/charles_robert_darwin/index.html?rss=1",
"Elements"]

If we just want to read the feed (as we would with a feed reader), we can actually open it as a new 
Mathematica notebook with the CreateDocument command.

CreateDocument[Import[
"https://web.archive.org/web/20150715200540/http://topics.nytimes.com/top/

reference/timestopics/people/d/charles_robert_darwin/index.html?rss=1",
"RSS"]]

If we want to scrape the feed, we can import it as a string.

nytDarwinSource = Import[
"https://web.archive.org/web/20150715200540/http://topics.nytimes.com/top/

reference/timestopics/people/d/charles_robert_darwin/index.html?rss=1"
, "Source"];

Head[nytDarwinSource]

The StringCases command lets us pull out individual entries.

nytDarwinItems =
StringCases[nytDarwinSource, Shortest["<item>" ~~ __ ~~ "</item>"]];

nytDarwinItems〚1〛

Here is a little function to replace the HTML codes for ampersands and angle brackets with charac-
ters, delete everything in angle brackets, then replace all other HTML codes with blank space.

cleanHTMLMarkup[str_] :=
StringReplace[
StringDelete[StringReplace[str, {"&amp;" → "&", "&lt;" → "<", "&gt;" → ">"}],
Shortest["<" ~~ __ ~~ ">"]], Shortest["&" ~~ __ ~~ ";"] → " "]

When we clean out the HTML markup, we see that it makes the remaining text much easier to read.

cleanHTMLMarkup["&lt;a
href=\"http://www.nytimes.com/2015/05/16/opinion/it-is-in-fact-rocket-
science.html?partner=rssnyt&amp;emc=rss\"&gt;&lt;img
src=\"http://static01.nyt.com/images/2015/05/16/opinion/16Mlodinow/16
Mlodinow-thumbStandard.jpg\" border=\"0\" height=\"75\"
width=\"75\" hspace=\"4\" align=\"left\"/&gt;&lt;/a&gt;Why
do we reduce great discoveries to epiphany myths?"]

Here is a function that scrapes information from the RSS feed and displays it in a format of our 
choosing. Note that we also include a link that will automatically open in our web browser if we want 
to read the full story. Since RSS feeds deal with material that changes frequently, there is no guaran-
tee that links will continue to work indefinitely (especially since we archived the feed on the Way-
back Machine). If you are monitoring a feed for up-to-date news, however, this is nice to have.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     101



Here is a function that scrapes information from the RSS feed and displays it in a format of our 
choosing. Note that we also include a link that will automatically open in our web browser if we want 
to read the full story. Since RSS feeds deal with material that changes frequently, there is no guaran-
tee that links will continue to work indefinitely (especially since we archived the feed on the Way-
back Machine). If you are monitoring a feed for up-to-date news, however, this is nice to have.

prettyPrintItem[it_] :=
Module[{title, author, pubdate, desc, link},
title = StringCases[it, Shortest["<title>" ~~ t__ ~~ "</title>"] → t];
author = StringCases[it, Shortest["<author>" ~~ a__ ~~ "</author>"] → a];
pubdate = StringCases[it, Shortest["<pubDate>" ~~ pd__ ~~ "</pubDate>"] → pd];
desc = StringCases[it, Shortest["<description>" ~~ __ ~~ "</description>"]];
link = StringCases[it, Shortest["<link>" ~~ l__ ~~ "</link>"] → l];
Column[{If[title ≠ {}, Text@Style[cleanHTMLMarkup@First@title, Bold]],

Text[If[author ≠ {}, First@author, "Anon"] <>
", " <> If[pubdate ≠ {}, First@pubdate, "nd"]],

Text@Style[cleanHTMLMarkup@First@desc, Medium], Hyperlink[
Style["Read in web browser", {Medium, FontFamily → Times}], link],

""}]]

prettyPrintItem[nytDarwinItems〚8〛]

This function gets all of the items in the feed, formats them, and displays them in a version of the 
viewData window.

prettyPrintItems[items_] :=
Framed[
Pane[Column[prettyPrintItem /@ items], {Automatic, 200}, Scrollbars → True]]

prettyPrintItems[nytDarwinItems]

We can also scrape specific information from an RSS feed. Here are all of the links

StringCases[nytDarwinSource, Shortest["<link>" ~~ __ ~~ "</link>"]]

We can grab one of the links and display the text in a window.

Framed[Pane[Text@Style[StringRiffle[cleanHTMLMarkup /@ StringCases[Import[
"http://opinionator.blogs.nytimes.com/2014/11/30/evolution-and-the-

american-myth-of-the-individual/?partner=rssnyt&amp;emc=rss
", "Source"],

Shortest["<p class=\"story-body-text" ~~ __ ~~ "</p>"]]],
Medium], {Automatic, 200}, Scrollbars → True]]

102     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Programming with Mathematica (Under Development)

listMatchGraph[left_, right_, lbl_] :=
Module{idxl, idxr, leftidx, rightidx, lself, rself, lcoords, rcoords, gr},
idxl = ToString /@ Range[Length[left]];
idxr = ToString /@ Range[Length[right]];
leftidx = StringRiffle /@ Thread[List[idxl, left]];
rightidx = StringRiffle /@ Thread[List[idxr, StringJoin[#, " "] & /@ right]];
lself = Thread[Rule[leftidx, leftidx]];
rself = Thread[Rule[rightidx, rightidx]];
lcoords = Thread[Rule[leftidx, Map[{-8, #} &, -Range[Length[leftidx]]]]];
rcoords =
Thread[Rule[rightidx, Map[{8, #} &, -Range[Length[rightidx]]]]];

gr = DeleteCasesThread
Ruleleftidx, rightidxFirst@First@Position[right, #] /. {} → {{0}} & /@

left, _ → List;
Show[GraphPlot[Join[lself, rself, gr], VertexLabeling → True,

VertexCoordinateRules → Join[lcoords, rcoords], SelfLoopStyle → None,
EdgeRenderingFunction → ({Gray, Arrow[#1 + {{1.6, 0}, {-1.6, 0}}]} & ),
VertexRenderingFunction → ({Black, Text[#2, #1]} &),
ImageSize → Large], PlotLabel → lbl, LabelStyle → {12}]

displaySearch[textassoc_, indexassoc_, term_] :=
Module[{results},
results =
Flatten[
Thread[List[Values@huxleyIndex[term]〚#〛, Keys@huxleyIndex[term]〚#〛]] & /@
Range[Length[Keys@huxleyIndex[term]]], 1];

Framed[Pane[Style[TableForm[Append[searchTermContext[textassoc, #〚1〛, #〚2〛],
Style[{#〚2〛, #〚1〛}, Darker@Green]] & /@ results],

Small], {Full, 200}, Scrollbars → True]]
]

Given a length and a list of character positions, return a list consisting of character ranges outside 
the first positions (all of the anomalous cases return pairs where first element is greater than second)

characterPositionComplement[len_, plist_] :=
SelectThreadJoinPrependPart[#, 2] & /@ plist + 1, 1,

AppendPart[#, 1] & /@ plist - 1, len, #〚1〛 ≤ #〚2〛 &

characterPositionComplement[87, {{2, 2}, {17, 31}, {44, 49}}]

characterPositionComplement[87, {{1, 2}, {17, 31}, {44, 49}}]

characterPositionComplement[87, {{1, 3}, {17, 31}, {44, 87}}]

characterPositionComplement[87, {{1, 13}, {9, 31}, {24, 87}}]

Given a string and a list of character positions, render the positions in bold and the rest of the string 
in gray

highlightCharacterPositions[str_, plist_] :=
Module[{len = StringLength[str], graylist, boldlist},
boldlist = Thread[Join[{plist, Bold}]];
graylist = Thread[Join[{characterPositionComplement[len, plist], Gray}]];
Return[Row[

Style[StringTake[str, First[#]], #〚2〛] & /@ Sort[Join[boldlist, graylist]]]]]

Pattern has Head Pattern

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     103



FullForm[Hold[StringPosition["AABBBAABABBCCCBAAA", _ ~~ x_]]]

Mathematica Commands to Review (Under Development)

◼ BE: Basic Examples, GE: Generalizing the Examples, PM: Programming with Mathematica, FE: 
Further Exploration

◼ CityData (BE)

◼ CreateDirectory (BE)

◼ CreateDocument (GE)

◼ DeleteDirectory (BE)

◼ Directory (BE)

◼ DirectoryQ (BE)

◼ EmbeddedHTML (GE)

◼ Except (GE)

◼ FileExistsQ (BE)

◼ FileNameJoin (BE)

◼ FileNames (BE)

◼ FromCharacterCode (GE)

◼ Get (BE)

◼ GroupBy (BE)

◼ ImageSize (GE)

◼ Import (BE)

◼ Infinity (GE)

◼ Manipulate (GE)

◼ Merge (BE)

◼ Not (BE)

◼ Pause (BE)

◼ ReplaceAll (BE)

◼ SetDirectory (BE)

◼ StringDelete (GE)

◼ StringDrop (BE)

◼ StringTrim (BE)

◼ TableForm (GE)

◼ ToExpression (GE)

◼ URLBuild (BE)

◼ URLFetch (BE)

◼ URLSave (BE)

◼ XMLElement (GE)

◼ XMLObject (GE)

Chapter 07: Image Processing (Under Development)

104     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



ch07

Chapter 07: Image Processing (Under Development)

Overview

The digital research techniques that we have learned up to this point mostly rely on having access 
to machine-readable text. In addition to human-readable formats like raw text, HTML and XML, 
machine-readable text can also be stored in thousands of different file formats like Adobe’s Portable 
Document Format (PDF), Microsoft Word documents or Excel spreadsheets, and so on. Mathemat-
ica can import many of these formats natively (see the documentation page listing all formats). It is 
also possible for text to be stored in the form of a digital picture, a page image, that was created by 
scanning or photographing a physical page. If the text on these page images was printed or typed, it 
can often be converted to machine-readable text by a process known as Optical Character Recogni-
tion (OCR). At present, handwritten text cannot be easily extracted from page images, although that 
may change in the near future. In this chapter we start by doing some work with page images, then 
we turn to techniques that allow us to work with and process digital images more generally.

Basic Examples

Page images in a PDF
If you are working with traditional printed or typed sources, you can create page images by digitizing 
your sources with a scanner or photographing them with a digital camera. People who do archival 
research now typically return from the archives with (tens of) thousands of digital images of docu-
ments. Managing these effectively is an important part of digital research. Rather than scan paper 
documents, we will download some page images to work with, but the basic principles are the same.

Let’s begin with a PDF. The Darwin Online site has a link to a paper on coral islands written by 
Darwin, edited by D. R. Stoddart and published in the Atoll Research Bulletin in 1962. 

http://darwin-online.org.uk/converted/pdf/1962_CoralIslands_F1576.pdf

Rather than use the original, I archived a copy in the Wayback Machine on July 28, 2015. If we use 
that copy, we don’t have to worry about the file changing on the original site.

https://web.archive.org/web/20150728202603/http://darwin-
online.org.uk/converted/pdf/1962_CoralIslands_F1576.pdf

PDFs can have multiple layers. What you see when you open the PDF in Acrobat or Acrobat 
Reader are the page images. In addition, the PDF can have a layer of searchable (that is, machine-
readable) text associated with each page. The easiest way to see if a particular PDF has this layer 
is to open it in Acrobat and try to search for a word you can see on the page. If search doesn’t work, 
the file is missing a text layer. That is the case for the Darwin paper on coral islands.

In Mathematica, we begin by using Import and requesting the elements associated with the file.

Import[
"https://web.archive.org/web/20150728202603/http://darwin-online.org.uk/

converted/pdf/1962_CoralIslands_F1576.pdf", "Elements"]

If the file had a text layer, we could use Import to get it, but this fails, giving us an empty string.

viewData[Import[
"https://web.archive.org/web/20150728202603/http://darwin-online.org.uk/

converted/pdf/1962_CoralIslands_F1576.pdf", "Plaintext"]]

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     105



We can, however, request the number of pages for the document.

Import[
"https://web.archive.org/web/20150728202603/http://darwin-online.org.uk/

converted/pdf/1962_CoralIslands_F1576.pdf", "PageCount"]

We can also get all of the page images for the document in a list. We check the length of our list to 
make sure we got all of the pages.

coralIslandsPageImages = Import[
"https://web.archive.org/web/20150728202603/http://darwin-online.org.uk/

converted/pdf/1962_CoralIslands_F1576.pdf", "Images"];

Length[coralIslandsPageImages]

We can get a sense of the document by using the ConformImages command to make all of the 
pages the same height (this is what the Tiny and Pillarbox options do). We can see there is a title 
page, some handwritten pages, and a few maps / figures.

ConformImages[coralIslandsPageImages, Tiny, "Pillarbox"]

The TextRecognize command performs OCR on a page image. Sometimes you have to adjust the 
scale of the image to get good results. Here I use the ImageResize and Scaled commands to 
double the size of the page image for page 2 before doing OCR on it.

viewData[TextRecognize[ImageResize[coralIslandsPageImages〚2〛, Scaled[2]]]]

If you look through the OCR results, you will see that they are good, but by no means perfect. 
Depending on the quality of the page images, the typeface, lighting, and many other factors, OCR 
can range from excellent to unusable. Whether or not you can use OCR for your own research 
depends on the nature of your project.

At present, Mathematica’s PDF importing capabilities are also somewhat buggy. If you are having 
trouble with using PDFs, be sure to do a search on mathematica.stackexchange.com to see if there 
are other techniques that you can take advantage of. 

(Under Development)

The rest of these sections contain working code and the odd comment but have not been written up 
yet. If you are trying to get something to work and having trouble with it, send me an email.

Visualizing all of the page images for a book
Source for page images is Darwin’s Expression of the Emotions in Man and Animals (1873)
We’re grabbing the zipped file of images

downloadIAFile["expressionofem00darw", "/Users/wjt/Downloads", "_jp2.zip"];

FileNames["/Users/wjt/Downloads/*zip"]

A list of filenames you can process

Import["/Users/wjt/Downloads/expressionofem00darw_jp2.zip", "FileNames"]〚1〛

Can import page image without uncompressing folder

ImageResize[Import["/Users/wjt/Downloads/expressionofem00darw_jp2.zip",
"expressionofem00darw_jp2/expressionofem00darw_0175.jp2"], 20]

Here doing it with my compressed folders

Get my compressed folders from GitHub

106     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



URLSave[
"https://github.com/williamjturkel/Digital-Research-Methods/blob/master/darwin

-expression/expressionofem00darw_jp2_thumbs.zip?raw=true",
"/Users/wjt/Downloads/expressionofem00darw_jp2_thumbs.zip"]

Import[
"/Users/wjt/Downloads/expressionofem00darw_jp2_thumbs.zip", "FileNames"]〚3〛

Import["/Users/wjt/Downloads/expressionofem00darw_jp2_thumbs.zip",
"expressionofem00darw_jp2_thumbs/expressionofem00darw_0002_thumb.jpg"]

URLSave[
"https://github.com/williamjturkel/Digital-Research-Methods/blob/master/darwin

-expression/expressionofem00darw_jp2_ocr.zip?raw=true",
"/Users/wjt/Downloads/expressionofem00darw_jp2_ocr.zip"]

Import["/Users/wjt/Downloads/expressionofem00darw_jp2_ocr.zip", "FileNames"]〚3〛

StringTake[Import["/Users/wjt/Downloads/expressionofem00darw_jp2_ocr.zip",
"expressionofem00darw_jp2_ocr/expressionofem00darw_0009_ocr.txt"], 500]

Given a zipped folder of jpegs, make a folder of tiny page images - this takes at least 15 mins to run 
so probably want to make zipped folder of page images available on GitHub or somewhere else 
(Zenodo?) then comment out this code

pageImageThumbs[inzip_, outfolder_] :=
 Module[{filelist, outfile},
  filelist = Import[inzip, "FileNames"];
  If[Not[DirectoryQ[outfolder]], CreateDirectory[outfolder]];
  Do[
   PrintTemporary["Processing " <> ToString[f]];
   outfile = ImageResize[Import[inzip, f], 20];
   Export[FileNameJoin[{outfolder, FileBaseName[f] <> "_thumb.jpg"}], outfile],
   {f, filelist}]
  ]

pageImageThumbs["/Users/wjt/Downloads/expressionofem00darw_jp2.zip", 
"/Users/wjt/Downloads/expressionofem00darw_jp2_thumbs"]

ImageResize::imginv: Expectingan imageor graphicsinsteadof $Failed.%

can start by visualizing from first to last on horizontal axis and darkness on vertical axis

get a list of page thumbnails

returnThumbList[ebkt_] :=
Map[Import, FileNames["*.jpg", ebkt]]

emotionsThumbs =
returnThumbList["/Users/wjt/Downloads/expressionofem00darw_jp2_thumbs"];

First[emotionsThumbs]

Mean[Mean[ImageData[ColorConvert[First[emotionsThumbs], "Grayscale"]]]]

Note that the {10,10} scale each page image; that SetAlphaChannel is used to make the images 
40% transparent; that bdata associates page numbers from 1 to 400 something with the mean 
brightness of that page; that the Opacity[0] is used to make the plot points invisible behind each 
page image; that Inset puts each page image at the right coordinates

Describe this with floating (empty pages) / sinking (dark, heavy pages) metaphor

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     107



With[{bdata = Thread[List[Range[Length[emotionsThumbs]],
Mean[Mean[ImageData[ColorConvert[#, "Grayscale"]]]] & /@ emotionsThumbs]]},

Graphics[{Opacity[0], Point[bdata],
MapThread[Inset[SetAlphaChannel[#1, .6], #2, Center, {10, 10}] &,
{emotionsThumbs, bdata}]},

Frame → True, ImageSize → Large, AspectRatio → 1,
FrameLabel → {"Page Number", "Brightness"},
PlotRange → {{1, Length[emotionsThumbs]}, {0, 1}}]]

Going to want to roll up the graphing function

OCR 
Given a zipped file of page images create a folder of pages with OCRed text - this one takes about 
50 minutes, so will want to Zenodo a folder of OCRed text files

pageImageOCR[inzip_, outfolder_] :=
 Module[{filelist, outfile},
  filelist = Import[inzip, "FileNames"];
  If[Not[DirectoryQ[outfolder]], CreateDirectory[outfolder]];
  Do[
   PrintTemporary["Processing " <> ToString[f]];
   outfile = TextRecognize[Import[inzip, f]];
   Export[FileNameJoin[{outfolder, FileBaseName[f] <> "_ocr.txt"}], outfile],
   {f, filelist}]
  ]

pageImageOCR["/Users/wjt/Downloads/expressionofem00darw_jp2.zip", 
"/Users/wjt/Downloads/expressionofem00darw_jp2_ocr"]

‘British Library’ visualization
Vertical axis is size of OCR text file, horizontal axis is JPEG file size

Given a list of files, return a list of file sizes, scaled between 0 and 1

scaledFileSizes[flist_] :=
Module[{fslist, max},
fslist = Map[FileByteCount, flist];
max = Max[fslist];
Return[Map[N[(# / max), 5] &, fslist]]]

With[{bdata = MapThread[List, {scaledFileSizes[FileNames["*.jpg",
"/Users/wjt/Downloads/expressionofem00darw_jp2_thumbs"]],

scaledFileSizes[FileNames["*_ocr.txt",
"/Users/wjt/Downloads/expressionofem00darw_jp2_ocr"]]}]},

Graphics[{Opacity[0], Point[bdata],
MapThread[Inset[SetAlphaChannel[#1, .6], #2, Center, {.01, .01}] &,
{emotionsThumbs, bdata}]},

Frame → True, ImageSize → Large, AspectRatio → 1,
FrameLabel → {"JPEG Thumb File Size", "OCR File Size"},
PlotRange → {{.7, 1.01}, {-.01, .25}}]]

Automatic image extraction
Need to show how to grab page tiffs in the first place

Source for this page image is Darwin’s Expression of the Emotions in Man and Animals (1873)
https://archive.org/details/expressionemoti01darwgoog

108     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



emotionsPage113GrayscaleImage = ColorConvert[ImageTrim[Import[
"/Users/wjt/Datasets/darwin-expression-tiffs/expressionemoti01darwgoog_

0113.tif"], {{175, 170}, {790, 1240}}], "Grayscale"];

emotionsPage113BWImage = MorphologicalBinarize[emotionsPage113GrayscaleImage];
Show[emotionsPage113BWImage, ImageSize → Medium]

Find contours

emotionsPage113TextRemoved =
DeleteSmallComponents[ColorNegate[emotionsPage113BWImage]];

Show[emotionsPage113TextRemoved, ImageSize → Medium]

Get bounding boxes for morphological components and display results

emotionsPage113BoundingBoxes =
ComponentMeasurements[emotionsPage113TextRemoved, "BoundingBox"]

emotionsPage113Chicken =
ImageTrim[emotionsPage113GrayscaleImage, emotionsPage113BoundingBoxes〚1, 2〛];

Show[emotionsPage113Chicken, ImageSize → Medium]

HighlightImage[emotionsPage113GrayscaleImage,
Graphics[{EdgeForm[Orange], Opacity[.3],

Rectangle @@ emotionsPage113BoundingBoxes〚1, 2〛}]]

Roll up into a dynamic / manipulate

OCR on this page - playing with scale a bit changes results, but no obvious win

TextRecognize[ImageResize[emotionsPage113GrayscaleImage, Scaled[2]]]

Detecting faces

emotionsPage216GrayscaleImage = ColorConvert[ImageTrim[Import[
"/Users/wjt/Datasets/darwin-expression-tiffs/expressionemoti01darwgoog_

0216.tif"], {{175, 170}, {790, 1240}}], "Grayscale"];

emotionsPage216Faces = FindFaces[emotionsPage216GrayscaleImage];
Map[ImageResize[ImageTrim[emotionsPage216GrayscaleImage, #], 100] &,
emotionsPage216Faces]

Photogrammetry
This can draw on the same tools as georectification - but do some automatic image alignments, too

Load Edinburgh rephotography image http://www.flickr.com/groups/flickrcommons/dis-
cuss/72157613061097398

edinburgh1 = Import[
"/Users/wjt/Dropbox/Code/mathematica/wjt-presentations/scott_3102127793_0

e6f260033.jpg"];
edinburgh2 = Import[

"/Users/wjt/Dropbox/Code/mathematica/wjt-presentations/scott_3231940512_1
bc20a7cab.jpg"];

{edinburgh1, edinburgh2}

Standardized versions

standardizeImage[im_] :=
ImageResize[ColorConvert[im, "Grayscale"], {400}]

edinburghStandardizedImages =
{standardizeImage[edinburgh1], Lighter[standardizeImage[edinburgh2]]};

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     109



Use computer vision techniques to find matching keypoints in the two images

edinburghMatches =
ImageCorrespondingPoints[##] & @@ edinburghStandardizedImages;

MapThread[Show[#1, Graphics[{Black, Background → Lighter@Orange, FontSize → 16,
MapIndexed[Inset[#2〚1〛, #1] &, #2]}]] &, {edinburghStandardizedImages,

Join[{edinburghMatches〚1, 1 ;; 3〛, edinburghMatches〚2, 1 ;; 3〛}]}]

Transform images into the same space, overlay them and create a dynamic image explorer

edinburgh3 = ImageAlign[edinburgh1, edinburgh2,
TransformationClass → "Rigid", Method → Automatic];

Manipulate[ImageCompose[edinburgh1, {edinburgh3, t}], {t, 0, 1}]

Georectification
National Library of Scotland

http://maps.nls.uk/os/6inch-england-and-wales/index.html

Original

http://maps.nls.uk/view/102352952#zoom=5&lat=3427&lon=10587&layers=BT

Saved view in Wayback Machine

https://web.archive.org/web/20150529201823/http://maps.nls.uk/view/102352952

Need to use FindGeometricTransformation once three points have been assigned.

devonshireCXXIII1856 = ;

GeoGraphics[GeoPosition[{50.359858, -4.162152}],
GeoRange → Quantity[1, "Kilometers"]]

firestoneBayContemporary = ;

ImageDimensions[firestoneBayContemporary]

DynamicModule[{pt = {{200, 200}, {220, 200}, {240, 200}}},
{LocatorPane[Dynamic[pt], Show[firestoneBayContemporary],

{{0, 0}, {524, 525}}], Dynamic[pt]}]

ImageDimensions[devonshireCXXIII1856]

devonshireCXXIII1856Resized = ImageResize[devonshireCXXIII1856, 525];

ImageDimensions[devonshireCXXIII1856Resized]

DynamicModule[{pt = {{200, 200}, {220, 200}, {240, 200}}},
{LocatorPane[Dynamic[pt], Show[devonshireCXXIII1856Resized],

{{0, 0}, {525, 314}}], Dynamic[pt]}]

FindGeometricTransform[{{34.8, 281.}, {201.2, 335.5}, {383.6, 148.5}},
{{10., 186.}, {182.8, 239.}, {373.2, 41.5}}]

110     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



ImagePerspectiveTransformation
devonshireCXXIII1856Resized, TransformationFunction

0.9618265368889533` 0.00370517784129947` 24.492571552628835`
0.01928460940043994` 0.9654267829359132` 101.23777227991553`

0 0 1
,

DataRange → Full, Padding → 0

525 - 314

ImageComposefirestoneBayContemporary, ImagePerspectiveTransformation
devonshireCXXIII1856Resized, TransformationFunction

0.9618265368889533` 0.00370517784129947` 24.492571552628835`
0.01928460940043994` 0.9654267829359132` 101.23777227991553`

0 0 1
,

DataRange → Full, Padding → 0, .7, {0, 0}, {0, 0}

Image classification
Use Mathematica’s powerful new machine learning features to automatically classify extracted 
images into photographs and drawings (further subdivision is easy on large datasets).

standarizePage[pg_] := ColorNegate[
MorphologicalBinarize[ColorConvert[pg, "Grayscale"], Method → "MinimumError"]]

identifyImageBoundingBoxes[spg_] :=
ComponentMeasurements[DeleteSmallComponents[spg],
"BoundingBox"]

getExtractedImageList[pg_] :=
Module[{bblist = identifyImageBoundingBoxes[standarizePage[pg]]},
Return[Map[ImageTrim[pg, #] &, bblist〚All, 2〛]]]

highlightExtractedImages[pg_] :=
Module[{bblist = identifyImageBoundingBoxes[standarizePage[pg]]},
Show[pg, Graphics[{EdgeForm[{Orange}],

Opacity[0], Rectangle @@@ bblist〚All, 2〛}], ImageSize → Small]]

demoImageExtraction[pgimglist_] :=
Module[{returnlist = {}},
Do[returnlist = Append[returnlist,

{i, highlightExtractedImages[i], Last[getExtractedImageList[i]]}],
{i, pgimglist}];

Return[returnlist]]

Training

Get images extracted from Darwin’s Expression and use them to train a machine learner. Mathemati-
ca’s Classify ‘super-function’ chooses an appropriate learning method and features, but can be 
tuned as necessary.

emotionsPageImageList = Map[Import,
FileNames["*.jpg", {"/Users/wjt/Datasets/darwin-expression-image-jpegs/"}]];

emotionsSortTrainingSet = {emotionsPageImageList〚1〛, emotionsPageImageList〚5〛,
emotionsPageImageList〚9〛, emotionsPageImageList〚14〛,
emotionsPageImageList〚18〛, emotionsPageImageList〚19〛,
emotionsPageImageList〚20〛, emotionsPageImageList〚27〛,
emotionsPageImageList〚25〛, emotionsPageImageList〚28〛,
emotionsPageImageList〚32〛, emotionsPageImageList〚34〛};

Map[Show[#, ImageSize → Tiny] &, emotionsSortTrainingSet]

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     111



emotionsImageSortingClassifier = Classify[
{emotionsPageImageList〚1〛 → "Drawing", emotionsPageImageList〚5〛 → "Drawing",
emotionsPageImageList〚9〛 → "Drawing", emotionsPageImageList〚14〛 → "Drawing",
emotionsPageImageList〚18〛 → "Drawing", emotionsPageImageList〚19〛 → "Photo",
emotionsPageImageList〚20〛 → "Photo", emotionsPageImageList〚25〛 → "Photo",
emotionsPageImageList〚27〛 → "Photo", emotionsPageImageList〚28〛 → "Photo",
emotionsPageImageList〚32〛 → "Drawing", emotionsPageImageList〚34〛 → "Photo"}]

Testing

emotionsSortTestingSet =
Complement[emotionsPageImageList, emotionsSortTrainingSet];

emotionsDemoImageSorting[eximglist_] :=
Module[{returnlist = {}},
Do[returnlist = Append[returnlist, {i, emotionsImageSortingClassifier[i]}],
{i, eximglist}];

Return[returnlist]]

TableForm[Partition[
emotionsDemoImageSorting[ImageResize[#, 90] & /@ emotionsSortTestingSet],
5, 5, 1, {}], TableSpacing → {5, 2}]

Automatically identifying images

{Show[emotionsSortTestingSet〚1〛, ImageSize → Tiny],
ImageIdentify[emotionsSortTestingSet〚1〛]}

{Show[emotionsSortTestingSet〚2〛, ImageSize → Tiny],
ImageIdentify[emotionsSortTestingSet〚2〛]}

{Show[emotionsSortTestingSet〚8〛, ImageSize → Tiny],
ImageIdentify[emotionsSortTestingSet〚8〛]}

This is what ImageIdentify thinks that is...

Belgian Sheepdog (dog breed)

{Show[emotionsSortTestingSet〚9〛, ImageSize → Tiny],
ImageIdentify[emotionsSortTestingSet〚9〛]}

{Show[emotionsSortTestingSet〚12〛, ImageSize → Tiny],
ImageIdentify[emotionsSortTestingSet〚12〛]}

ch08

Chapter 08: (Under Development)

Overview

This chapter contains working code for example projects that I intend to develop for the next edition. 
If you are trying to get something to work and having trouble with it, send me an email.

Hanging indent format

Style[StringTake[origin, 250], "Text", LineIndent → 1]

112     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Convert Roman numerals

IntegerString[1842, "Roman"]

FromDigits["MDCCCXLII", "Roman"]

In Mathematica 10.2 and later...

RomanNumeral[1842]

FromRomanNumeral["MDCCCXLII"]

Date computations

PersonData[Interpreter["ComputedPerson"]["Darwin"], "BirthDate"]

In Mathematica 10.2 and later

JulianDate Sun 12 Feb 1809 

FromJulianDate[2.3818256666666665`*^6]

This code comes from the Suggestions Bar

month calendar DateObject[{1809, 2, 11},
TimeObject[{23, 59, 60.}, TimeZone → -4.], TimeZone → -4.]

Language identification

unknownLanguage1 = StringTake[ExampleData[{"Text", "AeneidLatin"}], 500]

unknownLanguage2 = StringTake[ExampleData[{"Text", "HomerOdysseyGreek"}], 500]

unknownLanguage3 = StringTake[ExampleData[{"Text", "UNHumanRightsMaori"}], 500]

Results aren’t very impressive for historical languages (although Catalan is at least a Romance 
language)

LanguageIdentify /@ {unknownLanguage1, unknownLanguage2, unknownLanguage3}

As an exercise, try training classifier for Latin, Greek and Maori and see if it does better
http://www.wolfram.com/language/gallery/determine-the-language-of-a-text/ 

First recorded use of a word

WolframAlpha["evolved", {{"FirstRecordYear:WordData", 1}, "Plaintext"}]

WolframAlpha["evolution", {{"FirstRecordYear:WordData", 1}, "Plaintext"}]

Word frequency history

WolframAlpha["platypus", IncludePods → "BookMatchFrequency:WordData",
AppearanceElements → {"Pods"}, InputAssumptions → {"*C.platypus-_*Word-"},
TimeConstraint → {30, Automatic, Automatic, Automatic}]

Overall word frequency
We can use computable data from WolframAlpha to write a function that shows us how frequently a 
word occurred per billion words of text in a given year.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     113



wordFrequencyPerBillionWordsPerYear[word_, yr_] :=
Module[{data, idx},
data = WolframAlpha[word, {{"BookMatchFrequency:WordData", 1},

"ComputableData"}, PodStates → {"BookMatchFrequency:WordData__Raw"}];
If[Not[MissingQ[data]],
idx = Select[data, #〚1, 1〛 ⩵ yr &];
Return[idx〚1, 2, 1〛]]]

wordFrequencyPerBillionWordsPerYear["darwinian", 2005]

wordFrequencyPerBillionWordsPerYear["darwinian", 1959]

Wikipedia search popularity

WolframAlpha["charles darwin",
{{"PopularityPod:WikipediaStatsData", 1}, "Content"},
InputAssumptions → {"*C.wikipedia-_*WikipediaStatsDataPropertyClass-"}]

Short[WolframAlpha["charles darwin",
{{"PopularityPod:WikipediaStatsData", 1}, "TimeSeriesData"},
InputAssumptions → {"*C.wikipedia-_*WikipediaStatsDataPropertyClass-"}], 5]

Why the spike in Feb 2009?  Bicentennial of his birthday

PersonData[Interpreter["ComputedPerson"]["Darwin"], "BirthDate"]

KWIC revisited
A different method

origin7Grams = Partition[ToLowerCase[originWords], 7, 1];

Style[TableForm[Cases[origin7Grams, {_, _, _, "monstrous", _, _, _}]], Small]

This version doesn’t suffer the problem of overlapping windows

Style[
TableForm[Cases[origin7Grams, {_, _, _, "domestic", _, _, _}]〚1 ;; 8〛], Small]

Pretty printing a KWIC

This is a bit slow. May want to refactor to make it faster

nGramstoKWICDict[ngrams_] :=
Module[{kwicdict, keyidx},
kwicdict = {};
keyidx = Quotient[Length[First[ngrams]], 2] + 1;
Do[
kwicdict = Join[kwicdict, {Join[{Extract[k, keyidx], k}]}],
{k, ngrams}];

Return[Sort[kwicdict]]]

kwicRow[kwic_] :=
Module{tail, len, triple},
tail = First[Rest[kwic]];
len = Length[tail];
triple = 

StringJoin[Riffle[Take[tail, Quotient[len, 2]], " "]],
Extract[tail, Quotient[len, 2] + 1],
StringJoinRiffleTaketail, -Quotient[len, 2], " ";

Return[triple]

114     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



prettyPrintKWIC[kwicdict_, target_] :=
Module[{sublist},
sublist = {};
sublist = Cases[kwicdict, {target, __}];
Grid[Map[kwicRow, sublist], Frame → True, Alignment → {{Right, Center, Left}}]]

kwicDict = nGramstoKWICDict[origin7Grams];

prettyPrintKWIC[kwicDict, "embryo"]

A wordlist version of searching for one element near another

alice = ExampleData[{"Text", "AliceInWonderland"}];
aliceWordlist = TextWords[ToLowerCase[alice]];

Flatten[Position[aliceWordlist, "mad"]]

Flatten[Position[aliceWordlist, "hatter"]]

Tuples[{Flatten[Position[aliceWordlist, "mad"]],
Flatten[Position[aliceWordlist, "hatter"]]}]

Map[Sort, Select[Tuples[{Flatten[Position[aliceWordlist, "mad"]],
Flatten[Position[aliceWordlist, "hatter"]]}], Abs[#〚1〛 - #〚2〛] < 30 &]]

aliceWordlist〚6750 ;; 6789〛

TabView[Map[Column@
{StringRiffle@aliceWordlist〚Max[0, #〚1〛 - 10] ;; Max[0, #〚1〛 - 1]〛,
Style[StringRiffle@aliceWordlist〚#〚1〛 ;; #〚2〛〛, Bold],
StringRiffle@aliceWordlist〚Min[Length[aliceWordlist], #〚2〛 + 1]

;; Min[Length[aliceWordlist], #〚2〛 + 10]〛} &,
Map[Sort, Select[Tuples[{Flatten[Position[aliceWordlist, "mad"]],

Flatten[Position[aliceWordlist, "hatter"]]}], Abs[#〚1〛 - #〚2〛] < 30 &]]]]

searchNearWordList[wlist_, kw1_, kw2_, within_] :=
TabView[Map[Column@

{StringRiffle@wlist〚Max[0, #〚1〛 - 10] ;; Max[0, #〚1〛 - 1]〛,
Style[StringRiffle@wlist〚#〚1〛 ;; #〚2〛〛, Bold], StringRiffle@
wlist〚Min[Length[wlist], #〚2〛 + 1] ;; Min[Length[wlist], #〚2〛 + 10]〛} &,

Map[Sort, Select[Tuples[{Flatten[Position[wlist, kw1]],
Flatten[Position[wlist, kw2]]}], Abs[#〚1〛 - #〚2〛] < within &]]]]

searchNearWordList[aliceWordlist, "mad", "hatter", 30]

searchNearWordList[aliceWordlist, "march", "hare", 30]

A network graph of collocations
Rewrite bigrams as a list of graph edges by using Rule and @@@ then pull out the largest set of 
connected components.

Graph[Rule @@@ originBigramsFreq5Interesting]

Subgraph[Graph[Rule @@@ originBigramsFreq5Interesting],
WeaklyConnectedComponents[Graph[Rule @@@ originBigramsFreq5Interesting]]〚1〛,
VertexLabels → "Name"]

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     115



With[{g = Graph[Rule @@@ originBigramsFreq5Interesting]},
Pane[Subgraph[g, WeaklyConnectedComponents[g]〚1〛, VertexLabels →

Placed["Name", Center, Panel[#, FrameMargins → 0, Background → White] &],
GraphStyle → "SimpleLink", GraphLayout → {"SpringElectricalEmbedding",

"RepulsiveForcePower" → -2}, EdgeShapeFunction →
GraphElementData["ShortFilledArrow", "ArrowSize" → 0.004],

EdgeStyle → Gray, ImageSize → {2200, 1600}], {Full, 400}, Scrollbars → True]]

More fine-grained vector visualization

Length[originWords]

MatrixPlot[SparseArray[Position[originWords, "Lyell"] /. {n_} → ({1, n} → 1),
{1, 149982}, 0], ImageSize → Full]

MatrixPlot[SparseArray[Position[originWords, "Murchison"] /. {n_} → ({1, n} → 1),
{1, 149982}, 0], ImageSize → Full]

Another example: first row is “varieties”, second is “variation”

MatrixPlot[
SparseArray[Join[Map[Prepend[#, 1] → 1 &, Position[originWords, "varieties"]],

Map[Prepend[#, 2] → 2 &, Position[originWords, "variation"]]], {2, 151205}, 0],
ImageSize → Full, FrameTicks → {None, True}]

TF-IDF revisited
Suppose you find a page that is particularly relevant to your research. You can use the TF-IDF 
measure to find other pages that are closely related to that one. We will demonstrate this for pages 
from Origin, but the exact same technique works for a large corpus of documents and is useful in 
the creation of tools like custom search engines.

In Chapter 5, we worked through the calculation of TF-IDF step-by-step. Here we just want to 
bundle all of those calculations into a single function that we can apply over and over. The function 
below takes a text string, a list representing document frequencies for the whole document or 
corpus, and an integer indicating how many documents are being compared.

textTFIDF[txtstr_, docfreq_, numdocs_] :=
Module{outlist, txt, termlist, tflist, dflist, tf, df},
outlist = {};
txt = ToLowerCase[StringSplit[txtstr, Except[WordCharacter] ..]];
termlist = Union[txt];
tflist = Sort[Tally[txt], #1〚2〛 > #2〚2〛 &];
dflist = Select[docfreq, MemberQ[termlist, #〚1〛] &];
Do
tf = Cases[tflist, {t, x_} → x]〚1〛;
df = Cases[dflist, {t, x_} → x]〚1〛;
outlist = Appendoutlist, t, tf, df, Log[tf + 1.0] Lognumdocs  df,
{t, termlist};

Return[Sort[outlist, #1〚4〛 > #2〚4〛 &]]

Let’s confirm that this function works exactly the same as the code above. We can do this by calculat-
ing the TF-IDF for all of the terms in Chapter 9 of Origin of Species and then comparing our new 
results to the ones we already calculated. We use the command Equal to confirm they are identical.

testCh9TFIDF = textTFIDF[ch9, docFreq, 15];

Equal[testCh9TFIDF, ch9TFIDF]

The shorthand for Equal is two equal signs (==)

116     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



testCh9TFIDF == ch9TFIDF

Armed with this function, we can now pick any page in Origin and find other pages that are closely 
related. Suppose the following page piques our interest.

originLines〚13〛

We can calculate the TF-IDF for all the terms on the page. We use the Length command to fill in 
the value for the number of documents (i.e., pages).

textTFIDF[originLines〚13〛, docFreq, Length[originLines]]

Next, find related pages...

Clustering with normalized compression distance
This is not the most compelling version of this - the units are too large and the side-by-side compari-
son makes them look unrelated. Need to find a better example.

normalizedCompressionDistance[x_String, y_String, compression_: "GZIP"] :=
Module{cx, cy, cxy},
cx = StringLength[ExportString[x, {compression, "Text"}]];
cy = StringLength[ExportString[y, {compression, "Text"}]];
cxy = StringLength[ExportString[x <> y, {compression, "Text"}]];
ReturnNcxy - Min[cx, cy]  Max[cx, cy]

makeNCDMatrix[t1_, t2_] :=
Module[{matrix},
matrix = {};
matrix = Table[1., {Length[t1]}, {Length[t2]}];
Do[
Do[
matrix〚x, y〛 =
normalizedCompressionDistance[ToString[t1〚x〛], ToString[t2〚y〛]],

{y, x, Length[t2]}],
{x, Range[Length[t1]]}];

Return[matrix]]

inDictQ[w_] :=
If[Length[DictionaryLookup[w]] > 0, True, False]

originPartition = PartitionoriginWords, FloorN[Length[originWords]]  40;

vestigesPartition = PartitionStringSplit[vestigesTrimmed],
FloorN[Length[StringSplit[vestigesTrimmed]]]  40;

bookDistances = makeNCDMatrix[originPartition, vestigesPartition];

ArrayPlot[Rescale[1 - bookDistances], ColorFunction → "BlueGreenYellow",
ColorRules → {0.0 → White}, FrameTicks → Automatic]

Example: partition tuples Origin 7, Vestiges 36 look close

dictionaryOrigin7 = Union[Select[originPartition〚7〛, inDictQ]];

dictionaryVestiges36 = Union[Select[vestigesPartition〚36〛, inDictQ]];

Complement[Intersection[dictionaryOrigin7, dictionaryVestiges36], stopwords]

Put up pages side by side with commonalities marked

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     117



Module[{shared, sharedpositions1,
color1, colored1, sharedpositions2, color2, colored2},

shared = Complement[Intersection[dictionaryOrigin7,
dictionaryVestiges36], stopwords];

sharedpositions1 = Boole[Map[MemberQ[shared, #] &, originPartition〚7〛]];
color1 = Map[If[# ⩵ 1, Darker@Blue, Black] &, sharedpositions1];
colored1 = MapThread[Style[##] &, {originPartition〚7〛, color1}];
sharedpositions2 = Boole[Map[MemberQ[shared, #] &, vestigesPartition〚36〛]];
color2 = Map[If[# ⩵ 1, Darker@Blue, Black] &, sharedpositions2];
colored2 = MapThread[Style[##] &, {vestigesPartition〚36〛, color2}];
Row[{Pane[Riffle[Map[ToString[#, StandardForm] &, colored1], " "] // StringJoin,

{350}, Scrollbars → True],
Pane[Riffle[Map[ToString[#, StandardForm] &, colored2], " "] // StringJoin,
{350}, Scrollbars → True]}]]

Character-level file browsing
Want a more sophisticated version of this idea (fixed width font, left pad beginning and ends of text, 
and replace everything like newline characters with wingdings - something more like the classic 
hexadecimal file editors).

viewCharacterPosition[textstr_, part_] :=
Manipulate
Module{txt},
txt = StringTake[textstr, part];
StringTake[txt, {Max[1, char - 100], char - 1}] <> "▲" <>

StringTake[txt, {char, Min[StringLength[txt], char + 200]}],
{char, 1, part, 1, Appearance → "Labeled"}, ContentSize → {600, 200}

(*viewCharacterPosition[vestigesFull,2000]*)

Scraping Internet Archive identifiers
When we retrieved the Internet Archive identifiers for Huxley’s works in Project Gutenberg, we used 
the advance search functionality. Another way to accomplish the same goal is to use basic search 
and simply scrape the information we want.

huxleyGutenbergIAIdentifiers2 =
URLFetch["https://archive.org/search.php?query=" <> URLEncode[

"creator:\"Huxley, Thomas Henry, 1825-1895\" AND collection:Gutenberg"]];

Select[StringCases[huxleyGutenbergIAIdentifiers2,
Shortest["data-id=\"" ~~ x__ ~~ "\""] → x], StringContainsQ[#, "gut"] &]

Compare word lengths in two texts
We can see that although Origin is a longer work than Vestiges (there are more words in each 
length category) the overall distributions of word lengths are quite similar.

PairedHistogram[StringLength /@ originWords,
StringLength /@ TextWords[vestigesTrimmed],
ChartStyle → {"Pastel", None}, ChartLegends → {"Origin", "Vestiges"}]

OCLC WorldCat Identities

oclcWorldCatIdentitiesBaseURL = "http://worldcat.org/identities/";

darwinLCCN = "lccn-n78095637";

118     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Import[oclcWorldCatIdentitiesBaseURL <> darwinLCCN, "Elements"]

This function gets list of associated names and IDs. Note that here we are scraping HTML but we 
could also use XML

getWorldCatIdentitiesANamesIDs[id_] :=
StringCases[Import[oclcWorldCatIdentitiesBaseURL <> id, "Source"],
Shortest["<a property=\"knows\"" ~~ __ ~~

"href=\"http://www.worldcat.org/identities/" ~~ aid__ ~~
"\" title" ~~ __ ~~ ">" ~~ a__ ~~ " </a>"] → {aid, a}]

getWorldCatIdentitiesANamesIDs[darwinLCCN]

Huxley

getWorldCatIdentitiesANamesIDs["viaf-66511085"]

getWorldCatIdentitiesNeighborhood[id_] :=
Module[{neighbor1, outgraph, nname, ntemp},
neighbor1 = getWorldCatIdentitiesANamesIDs[id];
outgraph = Map["darwin" → #〚2〛 &, neighbor1];
Do[
nname = n〚2〛;
ntemp = getWorldCatIdentitiesANamesIDs[n〚1〛];
outgraph = Join[outgraph, Map[nname → #〚2〛 &, ntemp]],
{n, neighbor1}];

Return[outgraph]]

darwinIDNeighborhood = getWorldCatIdentitiesNeighborhood[darwinLCCN];

Short[darwinIDNeighborhood]

Pane[Graph[darwinIDNeighborhood, VertexLabels → Placed["Name", Center,
Panel[#, FrameMargins → 0, Background → White] &], GraphStyle → "SimpleLink",

GraphLayout → {"SpringElectricalEmbedding", "RepulsiveForcePower" → -2},
EdgeShapeFunction → GraphElementData["ShortFilledArrow", "ArrowSize" → 0.004],
EdgeStyle → Gray, ImageSize → {2200, 1600}], {Full, 400}, Scrollbars → True]

Finding email addresses

buildQuery[namestr_] :=
URLBuild[{"http://www.google.com", "search"},
{"q" → StringRiffle[TextWords[namestr]] <> " email"}]

Fetch search results

getResults[namestr_] :=
URLFetch[buildQuery[namestr]]

Given an HTML page of Google search results, return list of most common things that look like 
emails

getEmail[resultstr_] :=
Flatten@CommonestStringTrim[#, Repeated["."]] &@

StringCases[#, Except[WhitespaceCharacter] .. ~~
"@" ~~ Except[WhitespaceCharacter] ..] &@

StringReplace[#, Except[WordCharacter "@" "."] → " "] &@
StringDelete[#, Shortest["&" ~~ __ ~~ ";"]] &@
StringDelete[#, Shortest["<" ~~ __ ~~ ">"]] & /@

StringCases[resultstr, Repeated[_, {30}] ~~ "@" ~~ Repeated[_, {30}]]

getEmail[getResults["William Turkel University of Western Ontario"]]

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     119



getEmail[getResults["William Turkel UWO History"]]

Get emails for all the people in a list, waiting between 3 and 17 seconds between queries

getEmails[nlist_] :=
Module[{rlist},
rlist = {};
Do[
PrintTemporary[n];
Pause[RandomInteger[{3, 17}]];
rlist = Append[rlist, Join[n, getEmail[getResults[n]]]],
{n, nlist}];

Return[rlist]]

Use a different search engine

getEmail[URLFetch@URLBuild[{"http://www.bing.com", "search"},
{"q" → StringRiffle[TextWords["William Turkel UWO History"]] <> " email"}]]

Could try revising this to make use of new TextCases feature in Mathematica version 10.2

Scraping Darwin’s Itinerary for the Beagle voyage
A more extensive example of scraping. 

Link and data from original site...

Import["http://darwin-
online.org.uk/content/frameset?viewtype=text&itemID=A575&pageseq=1", "Elements"]

Import["http://darwin-
online.org.uk/content/contentblock?itemID=A575&basepage=1&hitpage=1&viewtype=text", 
"Elements"]

StringCases[Import["http://darwin-
online.org.uk/content/contentblock?itemID=A575&basepage=1&hitpage=1&viewtype=text", 
"Source"], "<p ><b >Day</b>" ~~ Shortest[__] ~~ "</p>"]

Rather than using original site, however, work from an Internet Archive crawl. That way don’t have 
to worry about site changing.

https://web.archive.org/web/20150526181938/http://darwin-
online.org.uk/content/frameset?viewtype=text&itemID=A575&pageseq=1

Import[
"https://web.archive.org/web/20150526181938/http://darwin-online.org.uk/

content/frameset?viewtype=text&itemID=A575&pageseq=1", "Elements"]

We need to get a page from within the frame

Import[
"https://web.archive.org/web/20150526181938/http://darwin-online.org.uk/

content/frameset?viewtype=text&itemID=A575&pageseq=1", "Hyperlinks"]

Here is Darwin’s Itinerary

Import[
"https://web.archive.org/web/20150526181938/http://darwin-online.org.uk/

content/contentblock?itemID=A575&basepage=1&hitpage=1&viewtype=text",
"Elements"]

We use StringCases to scrape out the itinerary items and have a look at the first three entries.

120     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



beagleItineraryList = StringCases[Import[
"https://web.archive.org/web/20150526181938/http://darwin-online.org.uk/

content/contentblock?itemID=A575&basepage=1&hitpage=1&viewtype=text"
, "Source"], "<p ><b >Day</b>" ~~ Shortest[__] ~~ "</p>"];

beagleItineraryList〚1 ;; 3〛

Now we want to pull out the date and latitude and longitude. Note that our scraper doesn’t pull Day 
1 because latitude and longitude aren’t recorded.

Flatten@StringCasesStringReplace[#, "º" → "°"],
Shortest"– " ~~ d : DigitCharacter .. ~~ __ ~~ "183" ~~ DigitCharacter ~~

" –" ~~ __ ~~ p : DigitCharacter .. ~~ "°" ~~ DigitCharacter .. ~~
"' " ~~ Characters["NSEW"] ~~ " " ~~ DigitCharacter .. ~~
"°" ~~ DigitCharacter .. ~~ "' " ~~ Characters["NSEW"] →

{DateObject[d], GeoPosition[p]} & /@ beagleItineraryList〚1 ;; 3〛

We won’t do anything with the dates right now, but let’s get all the locations and plot them on a 
world map.

beagleItineraryLocations =
Flatten@StringCasesStringReplace[#, "º" → "°"], Shortest

p : DigitCharacter .. ~~ "°" ~~ DigitCharacter .. ~~ "' " ~~ Characters[
"NSEW"] ~~ " " ~~ DigitCharacter .. ~~ "°" ~~

DigitCharacter .. ~~ "' " ~~ Characters["NSEW"] →

GeoPosition[p] & /@ beagleItineraryList;

GeoListPlot[Flatten@beagleItineraryLocations, PlotMarkers → None, Joined → True,
GeoRange → "World", GeoBackground → "ReliefMap", ImageSize → Large]

Using the Open Library API
This example requires Mathematica 10.2 or later.

openLibrary = ServiceConnect["OpenLibrary"]

lyellResults =
openLibrary["BookSearch", {"Author" → "Charles Lyell", "MaxItems" → 20}]

Second result has full text...

lyellResults〚2〛

Get Open Library ID

lyellResults[2, "EditionKey"]

Get information about that edition

openLibrary["BookInformation", {"BibKeys" → lyellResults[2, "EditionKey"]〚1〛}]

Get the full text using Open Library ID

lyellManual = openLibrary["BookText", {"BibKeys" → {"OLID", "OL25467158M"}}];

Now we can analyze the text like any other.

TextWords[StringTake[lyellManual[1], 2500]]

Find books about Charles Lyell

openLibrary["BookSearch", {"Subject" → "charles lyell"}]

Learn more about The Ice Finders

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     121



openLibrary["BookSearch", {"Author" → "bolles", "Title" → "ice finders"}][1][
"EditionKey"]

openLibrary["BookInformation",
{"BibKeys" → {"OLID", "OL23243795M"}}]["Subjects"]

TextCases
The TextCases command is experimental as of Mathematica 10.2

origin = ExampleData[{"Text", "OriginOfSpecies"}];
origin20K = StringTake[origin, 20000];

viewData[origin20K]

TextCases[origin20K, "Country"]

TextCases[origin20K, "ProperNoun", PerformanceGoal → "Quality"]

TextCases[origin20K, "Color"]

Sort[Tally[TextCases[origin20K, "Adjective"]], #1〚2〛 > #2〚2〛 &]〚1 ;; 20〛 //
TableForm

Working with JSTOR data for research
Citations for articles with Darwin in the title

jstorCitations = Import[
"https://raw.githubusercontent.com/williamjturkel/Digital-Research-Methods/

master/jstor-citations/citations.xml"];

Short[jstorCitations, 20]

Following code adapted from method in http://mathematica.stackexchange.com/questions/58527/im-
port-itunes-xml-data-and-convert-it-into-a-dataset-or-table

Clear[jstorXMLToDataset];
jstorXMLToDataset[xml_] :=
Block[{XMLElement},
XMLElement["citations", _, c_] := Dataset @ <|c|>;
XMLElement["article", {id_}, c_] := Unique["id"] → <|c |>;
XMLElement["doi", _, {c_}] := "doi" → c ;
XMLElement["title", _, {c_}] := "title" → c ;
XMLElement["author", _, {c_}] := "author" → c ;
XMLElement["journaltitle", _, {c_}] := "journaltitle" → c ;
XMLElement["volume", _, {c_}] := "volume" → c ;
XMLElement["issue", _, {c_}] := "issue" → c ;
XMLElement["pubdate", _, {c_}] := "pubdate" → DateList[c]〚1 ;; 3〛 ;
XMLElement["pagerange", _, {c_}] := "pagerange" → c ;
XMLElement["publisher", _, {c_}] := "publisher" → c ;
XMLElement["type", _, {c_}] := "type" → c ;
XMLElement["reviewed-work", _, {c_}] := "reviewed-work" → c ;
XMLElement["abstract", _, {c_}] := "abstract" → c ;
XMLElement[t_, _, {}] := t → Null;
xml〚2〛

]

Dataset of all records

Clear[cites]; cites = jstorXMLToDataset[jstorCitations]

First record

122     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



cites[1]

Head[First[cites]]

Head[cites]

Number of records

Length[cites]

Retrieve DOI for a couple of records

cites[1, "doi"]

cites[20, "doi"]

Find DOIs that match a pattern

Select[cites[All, "doi"], StringMatchQ[#, __ ~~ ";" ~~ __] &]

Now want to grab all of the keywords and put into another dataset. I have only included the first five 
of the raw keyword files in Github to show how the technique works.

Given a DOI return keyterm file name

doiToKeytermFilename[doi_] :=
"keyterms_" <> StringReplace[doi, {"/" → "_", ":" → "_"}, 1] <> ".XML"

For[i = 1, i ≤ 5, i++,
Print[doiToKeytermFilename[cites[i, "doi"]]]]

Paths to keyterm files on Github

"https://github.com/williamjturkel/Digital-Research-Methods/raw/master/jstor-
citations/keyterms/keyterms_10.1525_rep.2004.88.1.55.XML"

"https://github.com/williamjturkel/Digital-Research-Methods/raw/master/jstor-
citations/keyterms/keyterms_10.2307_1639681.XML"

Given a dataset number get terms from a keyterm file

doiKeyterms[n_] :=
Block[{XMLElement, xml},
xml = Import[

"https://github.com/williamjturkel/Digital-Research-Methods/raw/master/
jstor-citations/keyterms/" <>

doiToKeytermFilename[cites[n, "doi"]]];
XMLElement["article", {id_}, c_] :=
Unique["id"] → <|"doi" → id〚2〛, "keyterms" → c|> ;

XMLElement["keyterm", {w_}, {c_}] := c → w〚2〛;
xml〚2〛]

doiKeyterms[1]

Keyterm dataset

jstorXMLToKeytermDataset[dataset_] :=
Dataset[<|doiKeyterms /@ Range[Length[dataset]]|>]

Create a dataset of keyterms for the first five records

keytermsFive = jstorXMLToKeytermDataset[cites〚1 ;; 5〛];

keytermsFive

Now can join information from both tables using DOI

cites[3, "doi"]

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     123



Third record

keytermsFive[Select[#doi ⩵ cites[3, "doi"] &]]

Keyterms of third record

keytermsFive[Select[#doi ⩵ cites[3, "doi"] &], "keyterms"]

First keyterm of third record

keytermsFive[Select[#doi ⩵ cites[3, "doi"] &], "keyterms", 1]

All keyterms of third record, in list form

Normal[Values[keytermsFive[Select[#doi ⩵ cites[3, "doi"] &], "keyterms"]]〚1〛]

All keyterms of third record, list of keyterms only (without weighting)

Normal[
Keys[Values[keytermsFive[Select[#doi ⩵ cites[3, "doi"] &], "keyterms"]]〚1〛]]

Rather than put all of the individual keyterm files on Github, I created a Mathematica dataset that 
can be loaded directly. This has keyterms for all records.

keyterms = Get[
"https://raw.githubusercontent.com/williamjturkel/Digital-Research-Methods/

master/jstor-citations/keyterms-dataset.m"]

Try plotting a particular keyword over time

Normal[cites[3, "pubdate"]]

Histogram[Normal[Values[cites[All, "pubdate", 1]]]]

Create an association by joining information from both datasets using DOI as primary key

doiAssoc1 = JoinAcross[Normal@Values@cites[All, {"doi", "pubdate"}],
Normal@Values@keyterms[All, {"doi", "keyterms"}], Key["doi"]]

Head[doiAssoc1]

Head[First[doiAssoc1]]

Keywords for records published in 1917

Cases[Normal@doiAssoc1, {_, "pubdate" → {1917, _, _}, _}]

Keys[First[doiAssoc1]["keyterms"]]

MemberQ[Keys[First[doiAssoc1]["keyterms"]], "gender"]

MemberQ[Keys[doiAssoc1〚#〛["keyterms"]], "gender"] &[1]

Can strip down the association

doiAssoc2 = {doiAssoc1〚#〛["pubdate"]〚1〛, Keys@doiAssoc1〚#〛["keyterms"]} & /@
Range[Length[doiAssoc1]];

Short[doiAssoc2, 10]

Compute total number of keyterms per year - note increased numbers in 1909, 1959, 2009

keytermsPerYear =
GroupBy[Sort[{#〚1〛, Length[#〚2〛]} & /@ doiAssoc2], First → Last, Total]

ListLogPlot[Reverse[keytermsPerYear], Filling → Axis, PlotRange → Full]

Make a structure that has keyterm over time as proportion of articles in which it appears

124     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



doiAssoc3 = GroupBy[Flatten[Tuples[{doiAssoc2〚#, 2〛, {doiAssoc2〚#, 1〛}}] & /@
Range[Length[doiAssoc2]], 1], First → Last, Tally];

Short[doiAssoc3, 10]

doiAssoc3["gender"]

List[List[#〚1〛], #〚2〛] & /@ doiAssoc3["huxley"]

Get frequencies for all keyterms

keytermFreq = SortBy[Tally[Flatten[
Keys[doiAssoc1〚#〛["keyterms"]] & /@ Range[Length[doiAssoc1]]]], Last];

Take[keytermFreq, -100]

Sparklines http://mathematica.stackexchange.com/questions/9095/adding-lines-to-sparklines-plots-
w-o-frames-axes-etc

Further Digital Research Methods

These are things that I am considering adding at some point...

◼ 3D Models. Working with heritage artifact scans

◼ APIs. Using Wolfram Cloud to create application programming interfaces to share research 
results

◼ Approximate pattern matching. EditDistance, HammingDistance, 
DamerauLevenshteinDistance, Jaccard (dis)similarity, etc.

◼ Audio / sound.

◼ Bibliography and bibliometrics. Citation databases and citation analysis. Deciphering journal 
abbreviations.
http://journal.code4lib.org/articles/1758 

◼ Biography. Historical biographies of natural historians (OCR is unusable in Internet Archive 
book). Scrape names from Darwin Online and/or Wallace Online sites?
https://archive.org/details/Taxidermywithbi00Swai 
http://www.hps.cam.ac.uk/research/nhbnc.html 

◼ Captain Cook. 
Select[histevents, StringContainsQ[#[[1]], "Cook"] && 1760 <= DateList[#[[2]]][[1]] <= 1780 &]

◼ Cloud deployment. Sharing research results in manipulable form

◼ Comics. Here is a nice source about 'evolution'
http://digitalcomicmuseum.com/preview/index.php?did=17840&page=3 

◼ Computable data. ‘Freezing’ things in a form that can be quickly reloaded and rerun.

◼ Computational journalism. Implementation of techniques from Jonathan Stray course or 
ProPublica website.
http://courses.jmsc.hku.hk/jmsc6041spring2013/2013/02/14/introduction-computer-science-and-
journalism/ 

◼ Correspondence networks. Text of 7500 Darwin letters and information about 7500 more.
http://www.darwinproject.ac.uk 
http://www.darwinproject.ac.uk/all-darwins-correspondents 

◼ CrossRef metadata search. Resolve free-form citations
http://labs.crossref.org/resolving-citations-we-dont-need-no-stinkin-parser/ 

◼ Date Histogram.

◼ DBPedia. 
http://wiki.dbpedia.org 

◼ Digital Humanities. Points of contact with other projects
http://programminghistorian.org 
http://docs.voyant-tools.org/about/examples-gallery/ 
http://nbviewer.ipython.org/github/sgsinclair/alta/blob/master/ipynb/ArtOfLiteraryTextAnalysis.ipyn
b 
http://www.themacroscope.org 
http://benschmidt.org/dighist13/syllabus.pdf 
http://dh-r.lincolnmullen.com 
http://douglasduhaime.com 
http://mariandoerk.de/wordwanderer/corpora2015.pdf 

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     125



◼

Digital Humanities. Points of contact with other projects
http://programminghistorian.org 
http://docs.voyant-tools.org/about/examples-gallery/ 
http://nbviewer.ipython.org/github/sgsinclair/alta/blob/master/ipynb/ArtOfLiteraryTextAnalysis.ipyn
b 
http://www.themacroscope.org 
http://benschmidt.org/dighist13/syllabus.pdf 
http://dh-r.lincolnmullen.com 
http://douglasduhaime.com 
http://mariandoerk.de/wordwanderer/corpora2015.pdf 

◼ DOI resolving. 

◼ DPLA. API
http://dp.la/info/developers/codex/ 

◼ Dropbox access. Accessible from Mathematica 

◼ Entropy browser. Use his method to explore WARC files? Identify pictures, stretches of text / 
code, etc.?
http://yurichev.com/blog/entropy/ 

◼ External programs and file system. Shell access. FindList.

◼ Facial recognition. Eigenfaces example - details in Evernote notebook

◼ Genealogy. Reconstruct Darwin, Wedgwood, Galton family tree. Possibly by spidering Wikipedia 
Infobox person template, or possibly with DBPedia data. WolframAlpha has nice graphics for 
kinship relations; possible to use those generatively? Could also scrape "CD's cousin", "CD's 
son" labels from Darwin Project correspondence page. GEDCOM file format. GedML
https://en.wikipedia.org/wiki/Template:Infobox_person 
https://en.wikipedia.org/wiki/Charles_Darwin 
https://en.wikipedia.org/wiki/Darwin–Wedgwood_family 
<table class="infobox vcard" style="width:22em"> 
<th scope="row">Born</th> 
http://www.darwinproject.ac.uk/all-darwins-correspondents 
http://library.wolfram.com/infocenter/Demos/4215/ 
http://homepages.rootsweb.ancestry.com/~pmcbride/gedcom/55gctoc.htm 
http://www.gedcomx.org/About.html 

◼ Geographical networks. Late Medieval Trade Routes. ARPANET over time.
http://upload.wikimedia.org/wikipedia/commons/e/e1/Late_Medieval_Trade _Routes.jpg 
http://som.csudh.edu/cis/lpress/history/arpamaps/ 

◼ Geolocation. I have an example of geolocating places of newspaper publication using Trove data

◼ Google n-gram data.

◼ Grammars. Use rewriting rules to define grammar for limited domain (e.g., historical currencies, 
extracting capitalized phrases of arbitrary length). Simple grammars and transformation rules. 
Getting WordData for sentence understanding. Little languages or EDSLs.
http://reference.wolfram.com/language/guide/ProgrammableLinguisticInterface.html 

◼ Handwriting. 

◼ Hathi Trust. Data for mining
http://www.hathitrust.org/feature_extraction_alpha _release 
https://sharc.hathitrust.org/features 

◼ Historical photos. Train machine learner to distinguish different eras of photography: 
daguerreotypes, etc. Machine learning of gender with historical fashions. Draw images from 
British Library million or Flickr Commons? Possible to automate search for image details hidden 
in shadows of historical photos?
http://britishlibrary.typepad.co.uk/digital-scholarship/2013/12/a-million-first-steps.html 
https://github.com/BL-Labs/imagedirectory 

126     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



◼ Image averaging.

◼ Image repair. Inpainting examples from Mathematica documentation (repair old photos, remove 
time stamps and watermarks). Adapt ImageMagick technique for automatically increasing 
legibility of scans
http://journal.code4lib.org/articles/5385 
http://darwin-online.org.uk/graphics/RN_Illustrations.html 
http://darwin-online.org.uk/content/frameset?pageseq=1&itemID=CUL-DAR209 
.14.172&viewtype=image 
http://darwin.amnh.org/files/images/large/79949_MS-DAR-00049-000-00015.jpg 
http://www.amnh.org/our-research/darwin-manuscripts-project/journal-pocket-diary/1838-1881 

◼ Image tampering. e.g., Hany Farid's work. Comparing images with retouched or hoax versions? 

◼ ISBN services.
http://journal.code4lib.org/articles/8715 

◼ Latent Dirichlet allocation and latent semantic indexing. Example of LSI using 
DimensionReduce, DimensionReduction? (It is Experimental as of Mathematica v10.1)

◼ Library APIs. e.g., OCLC developer, LibraryThing. Getting more information about the books 
mentioned in Origin: Vestiges, Principles of Geology, Hooker's work, etc. Alternately, do 
something with the books that were carried on the Beagle. Closest library with item. WorldCat 
search API can do SRU but requires developer wskey. European Library has about 35K items for 
Darwin.
http://www.darwinproject.ac.uk/books-on-the-beagle 
http://darwin-online.org.uk/BeagleLibrary/Beagle_Library_Introduction.htm 
Find your library's code at http://www.worldcat.org/libraries (Western libraries 66428, oclcsymbol 
UWO)
https://platform.worldcat.org/api-explorer/wcapi 
https://www.oclc.org/developer/develop/web-services/worldcat-search-api/bibliographic-
resource.en.html 
http://www.theeuropeanlibrary.org/tel4/search?query=darwin 

◼ Linked open data for cultural heritage. Some mixture of DBPedia, LC/NAF and VIAF.

◼ Machine learning. My Weiss et al Text Mining notebook has an example of Naive Bayesian that 
could be easily adapted.
https://mathematicaforprediction.wordpress.com 
https://github.com/antononcube/MathematicaForPrediction 

◼ Manuscripts. Catalogue of all Darwin mss in the world (76K records)
http://test.darwin-online.org.uk/MScatintro.html 

◼ Moving images. Visualizing film, TV, video. Doing OCR on subtitles and news tickers

◼ Network analysis. Adapt Paul Revere example?

◼ New Mathematica commands. Most later than version 10.1
TextCases, TextPosition, Containing
TextSearch, TextSearchReport, SearchIndices, CreateSearchIndex, DeleteSearchIndex, 
ContentObject, Snippet
CharacterName
GoogleCustomSearch
NearestNeighborGraph
NestGraph (use to find nearby meanings for semantic data? or in spidering task?)
Nothing
NumberDecompose, MixedRadix (currency, time)
ConformImages, Thumbnail
WolframLanguageData

◼ Newspapers. In addition to Library of Congress’ Chronicling America and Trove, there are 11 
million pages of European newspapers at
http://www.theeuropeanlibrary.org/tel4/newspapers 

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     127



◼ Notebooks. Using code inside the notebook to solve various problems that may come up in 
research (easy things that come to mind would be automatically creating section headings for list 
of topics or dates; programmatic uses of Manipulate; hard things include searching and indexing; 
manipulating outlines; citation management)

◼ OAI-PMH metadata.
http://www.openarchives.org/Register/BrowseSites 
http://journal.code4lib.org/articles/7818 

◼ OCLC million. One million most widely held works in WorldCat
http://www.oclc.org/news/releases/2012/201252.en.html 

◼ OCR. Assess OCR quality by looking at ratio of 'words' to dictionary words. Build a Manipulate to 
explore parameters that make recognition better. StackExchange example of pulling material 
from different parts of the page.

◼ Open Calais. If this is still easy to call, I have an example using Trove

◼ Overview project. Details of the use of k-means clustering and TF-IDF in creating folders
https://blog.overviewdocs.com/2013/04/30/how-overview-can-organize-thousands-of-documents-
for-a-reporter/  

◼ PageRank. Weiss et al Text Mining 103-104; Mathematica help file for PageRankCentrality.
http://arxiv.org/abs/cs/0601030 

◼ Panoramas. Use ImageAlign to do an example with historical and contemporary photos 
(rephotography). Darwin’s Down House examples? Can Inpaint borders after transformations.
http://www.english-heritage.org.uk/visit/places/home-of-charles-darwin-down-house/ 
https://www.darwinproject.ac.uk/darwin-and-down 
http://www.lib.cam.ac.uk/Newsletters/nl07/downhouse.html 
https://www.darwinproject.ac.uk/dining-at-down-house 
https://en.wikipedia.org/wiki/Down_House#/media/File:Salón_Down _House.jpg 
http://www.english-heritage.org.uk/content/properties/the-home-of-charles-darwin-down-
house/portico/old-study-1882 

◼ PDF. Extracting text and page images. Bursting a PDF. (Mathematica seems to have a lot of 
difficulty with PDFs, so may need to call on ghostscript)
http://mathematica.stackexchange.com/questions/2781/difficulties-with-importing-pdfs-in-
mathematica 

◼ RDF. 

◼ Real time monitoring. Information trapping. Wikipedia edits. Google Trends. ScheduledTasks 
run with CloudDeploy (guide/TimedEvaluations in documentation).
http://www.google.com/trends/explore#q=geocities&geo=PE 

◼ Sequence alignments. Analyze successive edits of Origin. Look at use of Overscript and 
Overlay in keyboard example. Compare with Ben Fry visualization...
http://www.wolfram.com/language/gallery/correct-and-grade-keyboard-practice/ 
http://benfry.com/traces/ 

◼ Shape analysis. Barnacles and orchids. Might also do something with fractal dimension. 
Possible to use TimeWarpingCorrespondence to compare shapes?
http://darwin-online.org.uk/graphics/Living_Cirripedia_illustrations.html 
http://darwin-online.org.uk/graphics/FertilisationofOrchids_Illustrations.html 
http://darwin-online.org.uk/graphics/illustrations.html 

◼ Sparklines. 
http://mathematica.stackexchange.com/questions/9095/adding-lines-to-sparklines-plots-w-o-
frames-axes-etc 

◼ SPARQL. 

◼ Stereoscopic images. Reconstructing 3D geometry

128     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



◼ Stream methods. For working with very large files
http://reference.wolfram.com/language/tutorial/StreamMethods.html 

◼ Structured data and SQL. Querying databases. Descriptive statistics. Dataset data structure. 
Selections and transformations. Relational data and normalization. Grabbing stuff from SQL 
databases. New dataset manipulation commands allow you to do SQL-like things with structured 
data (JoinAcross etc.)
http://blog.codinghorror.com/a-visual-explanation-of-sql-joins/ 

◼ SRU. Search/Retrieval via URL.
http://www.loc.gov/standards/sru/misc/simple.html 
http://www.loc.gov/standards/sru/resources/lcServers.html 
http://stackoverflow.com/questions/13667361/how-to-retrieve-books-information-in-xml-json-from-
library-of-congress-by-isbn 

◼ Temporal expression grammar. Chang & Manning 2012. Stanford SUTime tagger.
https://github.com/stanfordnlp/CoreNLP/blob/master/src/edu/stanford/nlp/time/rules/english.sutime
.txt 

◼ Text classifier. I have one for images but not for text. Maybe something similar to the prose or 
poetry or authorship examples. Also check Classify documentation for built-in classifiers that may 
be of interest (Spam, Sentiment, NameGender, FacebookTopic, etc.)
http://www.wolfram.com/language/gallery/determine-if-a-text-is-prose-or-poetry/ 
http://www.wolfram.com/language/gallery/determine-the-author-of-a-text/ 

◼ TF-IDF. Other ways of calculating TF-IDF. Using IDF or TF-IDF to weight scores in document 
vector model. My Weiss et al Text Mining notebook has an example in section 4.4.2. Cosine 
similarity example in section 4.4.3.
http://en.wikipedia.org/wiki/Tf–idf 

◼ Topic modeling. Implement from scratch.

◼ Trigram frequencies. Function in this example
http://www.wolfram.com/language/gallery/generate-random-pronounceable-words/ 

◼ Tweets. Sentiment example? Seriating matrix of mentions
https://www.miskatonic.org/2013/02/24/seriation-and-kayiwa-yobj-vortex/ 

◼ Unicode.

◼ Unsupervised clustering. PeakDetect, FindPeaks. Classify. DimensionReduce.
tutorial/PartitioningDataIntoClusters 

◼ VIAF. OCLC Virtual International Authority File
http://inkdroid.org/journal/2012/05/15/diving-into-viaf/ 

◼ Visualization. SectorChart for something? Try adapting some examples from D3. Using 
ArrayPlot to plot cooccurrence relations.
https://github.com/mbostock/d3/wiki/Gallery 
http://prcweb.co.uk/circularheatchart/ 
http://bl.ocks.org/mbostock/4062006 
http://bl.ocks.org/mbostock/4063269 
http://orbitingfrog.com/2012/07/27/more-astronomy-data-mining-its-word-matrix-time/ 
http://deliveryimages.acm.org/10.1145/1750000/1743567/figs/f5c.jpg 
http://cacm.acm.org/magazines/2010/6/92482-a-tour-through-the-visualization-zoo/fulltext#figures 

◼ WARC file analysis. Use secure hash of images in WARC files to see how images travel from 
one website to another.
https://archive.org/details/ExampleArcAndWarcFiles 
https://bitbucket.org/hanzo/warc-tools 

◼ Web Crawling. Example of building up a complicated program step-by-step.

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     129



◼ Wikipedia. WikipediaData and WikipediaSearch. Possible to get links into and out of articles for 
spidering or citation analysis. Also possible to do stuff with Geolocation / GeoDisk and with image 
thumbnails. And Wikipedia entries in other languages (Title Translation Rules). Categories and 
subcategories. A very interesting example that uses cross-correlation between time series for 
different celebrities to cluster them into groups (cf computational history examples):
http://www.wolfram.com/language/gallery/visualize-celebrity-gossip/ 

◼ Wolfram Data Drop.
http://datadrop.wolframcloud.com 

◼ Zenodo. 

◼ Zipf's Law. Idea that it is a consequence of having whitespace. Discussion in Manning & 
Schutze, Foundations.
http://mathworld.wolfram.com/ZipfsLaw.html

◼ Zotero API. Have Mathematica code for earlier version of API but need to test with v.3

appA

Appendix A: Sources and Code
This contains sources and code from chapters 01-03 in a form that can be easily evaluated if you 
want to restart Mathematica or copy them into another notebook.

Sources

Darwin’s Origin of Species

origin = ExampleData[{"Text", "OriginOfSpecies"}];

Stopwords

stopwords = WordData[All, "Stopwords"];

All words in order

originWords = TextWords[origin];

Unique terms

originTerms = Union[TextWords[origin]];

Word frequencies

originWordFreqs = WordCounts[origin, IgnoreCase → True];

Bigram frequencies

originBigrams = WordCounts[origin, 2];

130     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb



Code

Predicates

capitalizedQ[w_] := UpperCaseQ[StringTake[w, 1]]

nonStopwordQ[w_] :=
Not[MemberQ[stopwords, w]]

These all search WordData

nounQ[str_] :=
Cases[WordData[str], {_, "Noun", ___}] ≠ {}

adjectiveQ[str_] :=
Cases[WordData[str], {_, "Adjective", ___}] ≠ {}

personTermQ[str_] :=
If[nounQ[str] && Not[adjectiveQ[str]], MemberQ[

Union[Flatten[NestList[Flatten[WordData[#, "BroaderTerms", "List"] & /@ #] &,
{str}, 3]]], "person"], False]

Get Wolfram Alpha Person Entity

getWAPerson[str_] :=
Module[{entity},
entity = WolframAlpha[str, "WolframResult"];
If[EntityTypeName[entity] ⩵ "Person", Return[entity]]]

Bag of Words

bagOfWords[str_] :=
Union@DeleteStopwords@TextWords@ToLowerCase[str]

View Data

viewData[x_] :=
Framed[Pane[x, {Automatic, 200}, Scrollbars → True]]

Keyword in Context
Best to set window size to 3 words on either side

kwic[text_String, keyword_String, win_Integer] :=
Module[{wordpattern, window, resultlist, formatted},
wordpattern = WordCharacter .. ~~ Except[WordCharacter] ..;
window = Repeated[wordpattern, {win}];
resultlist = StringCases[text,

window ~~ keyword ~~ Except[WordCharacter] .. ~~ window, IgnoreCase → True];
formatted = Style[TableForm[StringSplit[resultlist]], Medium];
Return[Framed[Pane[formatted, {Full, Automatic}, Scrollbars → True]]]]

Text Search

textSearch[txt_, str_] :=
TabView[Map[StringTake[txt, {#〚1〛 - 100, #〚2〛 + 100}] &,

StringPosition[txt, str ~~ WordBoundary]]]

turkel-digital-research-methods-with-mathematica-v1.0-2015.nb     131



Finding One String Near Another

stringFindNear[txt_, str1_, str2_, within_] :=
TabView[Map[StringTake[txt, {#〚1〛 - 100, #〚2〛 + 100}] &,

Select[DeleteCases[Partition[Sort[Join[Map[List[str1, #] &, StringPosition[
txt, str1 ~~ WordBoundary]〚All, 1〛], Map[List[str2, #] &,

StringPosition[txt, str2 ~~ WordBoundary]〚All, 1〛]], #1〚2〛 < #2〚2〛 &],
2, 1], {{x_, _}, {x_, _}}]〚All, 1 ;; 2, 2〛, (#〚2〛 - #〚1〛) ≤ within &]]]

Who’s Who
This version shows text matches

formatWAPersonData[assoc_] :=
Grid[{{assoc〚Key[EntityProperty["Person", "Image"]]〛,

Column[{Text@Style[assoc〚Key[EntityProperty["Person", "FullName"]]〛, Bold],
Text["b. " <> DateString@

assoc〚Key[EntityProperty["Person", "BirthDate"]]〛 <> ", d. " <>
DateString@assoc〚Key[EntityProperty["Person", "DeathDate"]]〛],

Column[Text[Style[#, Medium]] & /@
assoc〚Key[EntityProperty["Person", "NotableFacts"]]〛]}]}},

Frame → All, ItemSize → {{Scaled[.25], Scaled[.65]}},
Alignment → {{Center, Left}, {Top, Top}}]

whosWho2[assoc_, txt_] :=
MenuView[Sort[Table[Keys[assoc]〚i〛 → Column[{

formatWAPersonData[assoc〚Keys[assoc]〚i〛〛],
Text@
SlideView[With[{srch = Map[StringTake[txt, {#〚1〛 - 200, #〚2〛 + 200}] &,

StringPosition[txt, StringSplit[Keys[assoc]〚i〛,
Except[WordCharacter]]〚1〛 ~~ WordBoundary]]},

If[srch ≠ {}, srch, {Style["No match found", Italic]}]],
ImageSize → Scaled[0.9], ControlPlacement → Bottom,
AppearanceElements → {"FirstSlide", "PreviousSlide",

"NextSlide", "LastSlide", "SlideNumber", "SlideTotal"}]}],
{i, Length[Keys[assoc]]}]], ImageSize → Automatic]

Capitalized Words and Bigrams
Both take a text string

capitalizedWords[textstr_] :=
Union[Select[

Flatten[Map[Rest, Map[TextWords, TextSentences[textstr]]]], capitalizedQ]]

capitalizedBigrams[txtstr_] :=
Cases[Keys[WordCounts[

StringRiffle[Flatten[Map[Rest, Map[TextWords, TextSentences[txtstr]]]]],
2]], {_?capitalizedQ, _?capitalizedQ}]

132     turkel-digital-research-methods-with-mathematica-v1.0-2015.nb


